32 research outputs found

    Loss of sea ice during winter north of Svalbard

    Get PDF
    Sea ice loss in the Arctic Ocean has up to now been strongest during summer. In contrast, the sea ice concentration north of Svalbard has experienced a larger decline during winter since 1979. The trend in winter ice area loss is close to 10% per decade, and concurrent with a 0.3°C per decade warming of the Atlantic Water entering the Arctic Ocean in this region. Simultaneously, there has been a 2°C per decade warming of winter mean surface air temperature north of Svalbard, which is 20–45% higher than observations on the west coast. Generally, the ice edge north of Svalbard has retreated towards the northeast, along the Atlantic Water pathway. By making reasonable assumptions about the Atlantic Water volume and associated heat transport, we show that the extra oceanic heat brought into the region is likely to have caused the sea ice loss. The reduced sea ice cover leads to more oceanic heat transferred to the atmosphere, suggesting that part of the atmospheric warming is driven by larger open water area. In contrast to significant trends in sea ice concentration, Atlantic Water temperature and air temperature, there is no significant temporal trend in the local winds. Thus, winds have not caused the long-term warming or sea ice loss. However, the dominant winds transport sea ice from the Arctic Ocean into the region north of Svalbard, and the local wind has influence on the year-to-year variability of the ice concentration, which correlates with surface air temperatures, ocean temperatures, as well as the local wind

    Action to protect the independence and integrity of global health research

    Get PDF
    Storeng KT, Abimbola S, Balabanova D, et al. Action to protect the independence and integrity of global health research. BMJ GLOBAL HEALTH. 2019;4(3): e001746

    The COTUR project: remote sensing of offshore turbulence for wind energy application

    Get PDF
    The paper presents the measurement strategy and data set collected during the COTUR (COherence of TURbulence with lidars) campaign. This field experiment took place from February 2019 to April 2020 on the southwestern coast of Norway. The coherence quantifies the spatial correlation of eddies and is little known in the marine atmospheric boundary layer. The study was motivated by the need to better characterize the lateral coherence, which partly governs the dynamic wind load on multi-megawatt offshore wind turbines. During the COTUR campaign, the coherence was studied using land-based remote sensing technology. The instrument setup consisted of three long-range scanning Doppler wind lidars, one Doppler wind lidar profiler and one passive microwave radiometer. Both the WindScanner software and LidarPlanner software were used jointly to simultaneously orient the three scanner heads into the mean wind direction, which was provided by the lidar wind profiler. The radiometer instrument complemented these measurements by providing temperature and humidity profiles in the atmospheric boundary layer. The scanning beams were pointed slightly upwards to record turbulence characteristics both within and above the surface layer, providing further insight on the applicability of surface-layer scaling to model the turbulent wind load on offshore wind turbines. The preliminary results show limited variations of the lateral coherence with the scanning distance. A slight increase in the identified Davenport decay coefficient with the height is partly due to the limited pointing accuracy of the instruments. These results underline the importance of achieving pointing errors under 0.1∘ to study properly the lateral coherence of turbulence at scanning distances of several kilometres.publishedVersio

    Solar cyclic variability can modulate winter Arctic climate

    Get PDF
    Abstract This study investigates the role of the eleven-year solar cycle on the Arctic climate during 1979–2016. It reveals that during those years, when the winter solar sunspot number (SSN) falls below 1.35 standard deviations (or mean value), the Arctic warming extends from the lower troposphere to high up in the upper stratosphere and vice versa when SSN is above. The warming in the atmospheric column reflects an easterly zonal wind anomaly consistent with warm air and positive geopotential height anomalies for years with minimum SSN and vice versa for the maximum. Despite the inherent limitations of statistical techniques, three different methods – Compositing, Multiple Linear Regression and Correlation – all point to a similar modulating influence of the sun on winter Arctic climate via the pathway of Arctic Oscillation. Presenting schematics, it discusses the mechanisms of how solar cycle variability influences the Arctic climate involving the stratospheric route. Compositing also detects an opposite solar signature on Eurasian snow-cover, which is a cooling during Minimum years, while warming in maximum. It is hypothesized that the reduction of ice in the Arctic and a growth in Eurasia, in recent winters, may in part, be a result of the current weaker solar cycle
    corecore