120 research outputs found

    Convective damping of buoyancy anomalies and its effect on lapse rates in the tropical lower troposphere

    No full text
    International audienceIn actively convecting regions of the tropics, lapse rates in the lower troposphere (2.0 km to 5.2 km) vary with height in a way which is inconsistent with both reversible moist adiabatic and pseudoadiabatic assumptions. It is argued that this anomalous behavior arises from the tendency for the divergence of a convective buoyancy anomaly to be primarily offset by the collective divergence of all other updrafts and downdrafts within one Rossby radius of deformation. (Ordinarily, convective divergences are at least partially offset by an induced radiative divergence in the background atmosphere.) If convective divergences are balanced purely by other convective divergences, it would force the vertical clear sky radiative mass flux to be independent of altitude. This is consistent with what is observed at several radiosonde locations in the Western Tropical Pacific between 2.0 and 5.2 km. It is conjectured, that at tropical locations where SST's exceed 27°C over a region whose horizontal extent exceeds the local Rossby radius, this condition on the clear sky radiative mass flux serves to partially constrain the range of physically allowed mean temperature and moisture profiles in the lower troposphere

    Estimating the contribution of bromoform to stratospheric bromine and its relation to dehydration in the tropical tropopause layer

    No full text
    International audienceThe contribution of bromoform to the stratospheric bromine loading is estimated using the one-dimensional tropical mean model of Folkins and Martin (2005), which is constrained by observed mean profiles of temperature and humidity. In order to reach the stratosphere, bromoform needs to be lifted by deep convection into the tropical tropopause layer (TTL), above the level of zero radiative heating. The contribution of bromoform to stratospheric bromine then depends critically on the rate of removal of the degradation products of bromoform (collectively called Bry here) from the TTL, which is believed to be due to scavenging by falling ice. This relates the transport of short-lived bromine species into the stratosphere to processes of dehydration in the TTL. In the extreme case of dehydration occurring only through overshooting deep convection, the loss of Bry from the TTL may be negligible and consequently bromoform will fully contribute with its boundary layer mixing ratio to the stratospheric bromine loading, i.e. with 3 pptv for an assumed 1 pptv of bromoform in the boundary layer. For the other extreme that Bry is removed from the TTL almost instantaneously, the model calculations predict a contribution of about 0.5 pptv for the assumed 1 pptv of boundary layer bromoform. While this gives some constraints on the contribution of bromoform to stratospheric bromine, a key uncertainty in estimating the contribution of short-lived bromine source gases to the stratospheric bromine loading is the mechanism and rate of removal of Bry within the TTL

    Lattice models and Landau theory for type II incommensurate crystals

    Full text link
    Ground state properties and phonon dispersion curves of a classical linear chain model describing a crystal with an incommensurate phase are studied. This model is the DIFFOUR (discrete frustrated phi4) model with an extra fourth-order term added to it. The incommensurability in these models may arise if there is frustration between nearest-neighbor and next-nearest-neighbor interactions. We discuss the effect of the additional term on the phonon branches and phase diagram of the DIFFOUR model. We find some features not present in the DIFFOUR model such as the renormalization of the nearest-neighbor coupling. Furthermore the ratio between the slopes of the soft phonon mode in the ferroelectric and paraelectric phase can take on values different from -2. Temperature dependences of the parameters in the model are different above and below the paraelectric transition, in contrast with the assumptions made in Landau theory. In the continuum limit this model reduces to the Landau free energy expansion for type II incommensurate crystals and it can be seen as the lowest-order generalization of the simplest Lifshitz-point model. Part of the numerical calculations have been done by an adaption of the Effective Potential Method, orginally used for models with nearest-neighbor interaction, to models with also next-nearest-neighbor interactions.Comment: 33 pages, 7 figures, RevTex, submitted to Phys. Rev.

    Surgical impact on brain tumor invasion: A physical perspective

    Get PDF
    It is conventional strategy to treat highly malignant brain tumors initially with cytoreductive surgery followed by adjuvant radio- and chemotherapy. However, in spite of all such efforts, the patients' prognosis remains dismal since residual glioma cells continue to infiltrate adjacent parenchyma and the tumors almost always recur. On the basis of a simple biomechanical conjecture that we have introduced previously, we argue here that by affecting the 'volume-pressure' relationship and minimizing surface tension of the remaining tumor cells, gross total resection may have an inductive effect on the invasiveness of the tumor cells left behind. Potential implications for treatment strategies are discussed

    αV Integrin Induces Multicellular Radioresistance in Human Nasopharyngeal Carcinoma via Activating SAPK/JNK Pathway

    Get PDF
    BACKGROUND:Tumor cells acquire the capacity of resistance to chemotherapy or radiotherapy via cell-matrix and cell-cell crosstalk. Integrins are the most important cell adhesion molecules, in which αV integrin mainly mediating the tight contact between tumor cells. METHODOLOGY/PRINCIPAL FINDINGS:To investigate the role of αV integrin in multi-cellular radioresistance (MCR) of human nasopharyngeal carcinoma (NPC), we performed immunohistochemistry and Western blotting to find that the expression of αV integrin in the tumor tissue of radioresistant patients is much higher than that in radiosensitive patients. In vitro, we cultured human NPC cell line CNE-2 cells as multi-cellular spheroids (MCSs) or as monolayer cells (MCs), and found that the expression of αV integrin in MCSs is significantly higher than that in MCs. MTT, flow cytometry and clonogenic survival assays showed that MCSs are less sensitive to X-ray irradiation than MCs while blocking of αV integrin in MCSs dramatically reversed their radioresistance. Furthermore, as detected by Western blotting, MCSs displayed sustained activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) pathway in presence of irradiation. Blocking of αV integrin in MCSs decreased the expression of phosphorylated JNK. Additionally, blocking of SAPK/JNK signaling pathway synergistically induced apoptosis of MCSs exposed to irradiation by increasing the expression of cleaved caspase-3. In vivo, we found that irradiation combined with αV integrin blocking treatment significantly enhanced the radiosensitivity of NPC xenografts. CONCLUSIONS:Our results indicate a novel role of αV integrin in multi-cellular radioresistance of NPCs

    Tropopause and hygropause variability over the equatorial Indian Ocean during February and March 1999.

    Get PDF
    Measurements of temperature, water vapor, total water, ozone, and cloud properties were made above the western equatorial Indian Ocean in February and March 1999. The cold-point tropopause was at a mean pressure-altitude of 17 km, equivalent to a potential temperature of 380 K, and had a mean temperature of 190 K. Total water mixing ratios at the hygropause varied between 1.4 and 4.1 ppmv. The mean saturation water vapor mixing ratio at the cold point was 3.0 ppmv. This does not accurately represent the mean of the measured total water mixing ratios because the air was unsaturated at the cold point for about 40% of the measurements. As well as unsaturation at the cold point, saturation was observed above the cold point on almost 30% of the profiles. In such profiles the air was saturated with respect to water ice but was free of clouds (i.e., backscatter ratio <2) at potential temperatures more than 5 K above the tropopause and hygropause. Individual profiles show a great deal of variability in the potential temperatures of the cold point and hygropause. We attribute this to short timescale and space-scale perturbations superimposed on the seasonal cycle. There is neither a clear and consistent “setting” of the tropopause and hygropause to the same altitude by dehydration processes nor a clear and consistent separation of tropopause and hygropause by the Brewer-Dobson circulation. Similarly, neither the tropopause nor the hygropause provides a location where conditions consistently approach those implied by a simple “tropopause freeze drying” or “stratospheric fountain” hypothesis

    Enhancing the effectiveness of interdisciplinary mental health treatment teams

    Full text link
    Mental health administrators often lack guidelines for promoting and evaluating the effectiveness of interdisciplinary clinical treatment teams. This article describes the use of a model of group effectiveness that elucidates several aspects of team effectiveness. Also discussed are how administrators can support such teams by reviewing their initial set-up, how the organization influences the team's productivity and longevity, and how team members can better understand one another's personal and professional frames of reference to improve mutual collaboration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44090/1/10488_2005_Article_BF02106536.pd
    corecore