185 research outputs found

    Individual movement variability magnitudes are predicted by cortical neural variability

    Get PDF
    Humans exhibit considerable motor variability even across trivial reaching movements. This variability can be separated into specific kinematic components such as extent and direction that are thought to be governed by distinct neural processes. Here, we report that individual subjects (males and females) exhibit different magnitudes of kinematic variability, which are consistent (within individual) across movements to different targets and regardless of which arm (right or left) was used to perform the movements. Simultaneous fMRI recordings revealed that the same subjects also exhibited different magnitudes of fMRI variability across movements in a variety of motor system areas. These fMRI variability magnitudes were also consistent across movements to different targets when performed with either arm. Cortical fMRI variability in the posterior–parietal cortex of individual subjects explained their movement–extent variability. This relationship was apparent only in posterior-parietal cortex and not in other motor system areas, thereby suggesting that individuals with more variable movement preparation exhibit larger kinematic variability. We therefore propose that neural and kinematic variability are reliable and interrelated individual characteristics that may predispose individual subjects to exhibit distinct motor capabilities

    Effector-invariant movement encoding in the human motor system

    Get PDF
    Ipsilateral motor areas of cerebral cortex are active during arm movements and even reliably predict movement direction. Is coding similar during ipsilateral and contralateral movements? If so, is it in extrinsic (world-centered) or intrinsic (joint-configuration) coordinates? We addressed these questions by examining the similarity of multivoxel fMRI patterns in visuomotor cortical regions during unilateral reaching movements with both arms. The results of three complementary analyses revealed that fMRI response patterns were similar across right and left arm movements to identical targets (extrinsic coordinates) in visual cortices, and across movements with equivalent joint-angles (intrinsic coordinates) in motor cortices. We interpret this as evidence for the existence of distributed neural populations in multiple motor system areas that encode ipsilateral and contralateral movements in a similar manner: according to their intrinsic/joint coordinates

    Individual movement variability magnitudes are explained by cortical neural variability

    Get PDF
    Humans exhibit considerable motor variability even across trivial reaching movements. This variability can be separated into specific kinematic components such as extent and direction that are thought to be governed by distinct neural processes. Here, we report that individual subjects (males and females) exhibit different magnitudes of kinematic variability, which are consistent (within individual) across movements to different targets and regardless of which arm (right or left) was used to perform the movements. Simultaneous fMRI recordings revealed that the same subjects also exhibited different magnitudes of fMRI variability across movements in a variety of motor system areas. These fMRI variability magnitudes were also consistent across movements to different targets when performed with either arm. Cortical fMRI variability in the posterior–parietal cortex of individual subjects explained their movement–extent variability. This relationship was apparent only in posterior-parietal cortex and not in other motor system areas, thereby suggesting that individuals with more variable movement preparation exhibit larger kinematic variability. We therefore propose that neural and kinematic variability are reliable and interrelated individual characteristics that may predispose individual subjects to exhibit distinct motor capabilities

    Toddlers later diagnosed with autism exhibit multiple structural abnormalities in temporal corpus callosum fibers

    Get PDF
    Interhemispheric functional connectivity abnormalities are often reported in autism and it is thus not surprising that structural defects of the corpus callosum (CC) are consistently found using both traditional MRI and DTI techniques. Past DTI studies however, have subdivided the CC into 2 or 3 segments without regard for where fibers may project to within the cortex, thus placing limitations on our ability to understand the nature, timing and neurobehavioral impact of early CC abnormalities in autism. Leveraging a unique cohort of 97 toddlers (68 autism; 29 typical) we utilized a novel technique that identified seven CC tracts according to their cortical projections. Results revealed that younger (<2.5 years old), but not older toddlers with autism exhibited abnormally low mean, radial, and axial diffusivity values in the CC tracts connecting the occipital lobes and the temporal lobes. Fractional anisotropy and the cross sectional area of the temporal CC tract were significantly larger in young toddlers with autism. These findings indicate that water diffusion is more restricted and unidirectional in the temporal CC tract of young toddlers who develop autism. Such results may be explained by a potential overabundance of small caliber axons generated by excessive prenatal neural proliferation as proposed by previous genetic, animal model, and postmortem studies of autism. Furthermore, early diffusion measures in the temporal CC tract of the young toddlers were correlated with outcome measures of autism severity at later ages. These findings regarding the potential nature, timing, and location of early CC abnormalities in autism add to accumulating evidence, which suggests that altered inter-hemispheric connectivity, particularly across the temporal lobes, is a hallmark of the disorder

    Dissociating Object Directed and Non-Object Directed Action in the Human Mirror System; Implications for Theories of Motor Simulation

    Get PDF
    Mirror neurons are single cells found in macaque premotor and parietal cortices that are active during action execution and observation. In non-human primates, mirror neurons have only been found in relation to object-directed movements or communicative gestures, as non-object directed actions of the upper limb are not well characterized in non-human primates. Mirror neurons provide important evidence for motor simulation theories of cognition, sometimes referred to as the direct matching hypothesis, which propose that observed actions are mapped onto associated motor schemata in a direct and automatic manner. This study, for the first time, directly compares mirror responses, defined as the overlap between action execution and observation, during object directed and meaningless non-object directed actions. We present functional MRI data that demonstrate a clear dissociation between object directed and non-object directed actions within the human mirror system. A premotor and parietal network was preferentially active during object directed actions, whether observed or executed. Moreover, we report spatially correlated activity across multiple voxels for observation and execution of an object directed action. In contrast to predictions made by motor simulation theory, no similar activity was observed for non-object directed actions. These data demonstrate that object directed and meaningless non-object directed actions are subserved by different neuronal networks and that the human mirror response is significantly greater for object directed actions. These data have important implications for understanding the human mirror system and for simulation theories of motor cognition. Subsequent theories of motor simulation must account for these differences, possibly by acknowledging the role of experience in modulating the mirror response

    Reduction in Inter-Hemispheric Connectivity in Disorders of Consciousness

    Get PDF
    Clinical diagnosis of disorders of consciousness (DOC) caused by brain injury poses great challenges since patients are often behaviorally unresponsive. A promising new approach towards objective DOC diagnosis may be offered by the analysis of ultra-slow (<0.1 Hz) spontaneous brain activity fluctuations measured with functional magnetic resonance imaging (fMRI) during the resting-state. Previous work has shown reduced functional connectivity within the “default network”, a subset of regions known to be deactivated during engaging tasks, which correlated with the degree of consciousness impairment. However, it remains unclear whether the breakdown of connectivity is restricted to the “default network”, and to what degree changes in functional connectivity can be observed at the single subject level. Here, we analyzed resting-state inter-hemispheric connectivity in three homotopic regions of interest, which could reliably be identified based on distinct anatomical landmarks, and were part of the “Extrinsic” (externally oriented, task positive) network (pre- and postcentral gyrus, and intraparietal sulcus). Resting-state fMRI data were acquired for a group of 11 healthy subjects and 8 DOC patients. At the group level, our results indicate decreased inter-hemispheric functional connectivity in subjects with impaired awareness as compared to subjects with intact awareness. Individual connectivity scores significantly correlated with the degree of consciousness. Furthermore, a single-case statistic indicated a significant deviation from the healthy sample in 5/8 patients. Importantly, of the three patients whose connectivity indices were comparable to the healthy sample, one was diagnosed as locked-in. Taken together, our results further highlight the clinical potential of resting-state connectivity analysis and might guide the way towards a connectivity measure complementing existing DOC diagnosis

    Measuring Empathizing and Systemizing with a Large US Sample

    Get PDF
    A large number of people completed one of two versions of the empathizing quotient (EQ) and systemizing quotient (SQ). One version had the negatively phrased items all re-worded. These re-worded items were answered more rapidly than the original items, and for the SQ produced a more reliable scale. Subjects gave self-assessments of empathizing and systemizing, and these were moderately correlated, r≈.6, with their respective quotients. Females had on average higher empathizing scores and males had on average higher systemizing scores. If a female-male pair was chosen at random, the female would have the higher empathizing score about two-thirds of the time, and the males would have the higher systemizing score about two-thirds of the time

    (Certified) Humane Violence? Animal Production, the Ambivalence of Humanizing the Inhumane, and What International Humanitarian Law Has to Do with It

    Get PDF
    The chapter draws a comparison with the self-certifying of production methods as ‘humane’ or animal-friendly in the labelling of animal products—that is, according to companies’ own self-imposed codes of conduct. It likens the idea of humanizing animal slaughter, factory farms, and other forms of production to the notion of humanizing warfare. Like international humanitarian law (IHL), animal welfare law is marked by the tension inherent in its attempt to humanize innately inhumane practices. Given these parallels, the analysis of animal welfare law might benefit from existing insights into the potential and limits of IHL. Both areas of law endorse a principle of ‘humanity’ while arguably facilitating and legitimizing the use of violence, and might thereby ultimately perpetuate the suffering of living beings. The implicit justification of violence percolating from the IHL-like animal ‘protection’ laws could only be outweighed by complementing this body of law with a ius contra bellum for animals

    Observation of Static Pictures of Dynamic Actions Enhances the Activity of Movement-Related Brain Areas

    Get PDF
    Physiological studies of perfectly still observers have shown interesting correlations between increasing effortfulness of observed actions and increases in heart and respiration rates. Not much is known about the cortical response induced by observing effortful actions. The aim of this study was to investigate the time course and neural correlates of perception of implied motion, by presenting 260 pictures of human actions differing in degrees of dynamism and muscular exertion. ERPs were recorded from 128 sites in young male and female adults engaged in a secondary perceptual task.Our results indicate that even when the stimulus shows no explicit motion, observation of static photographs of human actions with implied motion produces a clear increase in cortical activation, manifest in a long-lasting positivity (LP) between 350–600 ms that is much greater to dynamic than less dynamic actions, especially in men. A swLORETA linear inverse solution computed on the dynamic-minus-static difference wave in the time window 380–430 ms showed that a series of regions was activated, including the right V5/MT, left EBA, left STS (BA38), left premotor (BA6) and motor (BA4) areas, cingulate and IF cortex.Overall, the data suggest that corresponding mirror neurons respond more strongly to implied dynamic than to less dynamic actions. The sex difference might be partially cultural and reflect a preference of young adult males for highly dynamic actions depicting intense muscular activity, or a sporty context
    corecore