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ABSTRACT 29 

Humans exhibit considerable motor variability even across trivial reaching movements. This 30 

variability can be separated into specific kinematic components such as extent and direction, 31 

which are thought to be governed by distinct neural processes. Here, we report that individual 32 

subjects (males and females) exhibit different magnitudes of kinematic variability, which are 33 

consistent (within individual) across movements to different targets and regardless of which 34 

arm (right or left) was used to perform the movements. Simultaneous fMRI recordings 35 

revealed that the same subjects also exhibited different magnitudes of fMRI variability across 36 

movements in a variety of motor system areas. These fMRI variability magnitudes were also 37 

consistent across movements to different targets when performed with either arm. Cortical 38 

fMRI variability in the posterior-parietal cortex of individual subjects explained their 39 

movement-extent variability. This relationship was apparent only in posterior-parietal cortex 40 

and not in other motor system areas, thereby suggesting that individuals with more variable 41 

movement preparation exhibit larger kinematic variability. We, therefore, propose that neural 42 

and kinematic variability are reliable and interrelated individual characteristics that may 43 

predispose individual subjects to exhibit distinct motor capabilities. 44 

 45 

Significance Statement: Neural activity and movement kinematics are remarkably variable. 46 

While this intertrial variability is mostly over looked, here we demonstrate that individual 47 

human subjects exhibit distinct magnitudes of neural and kinematic variability, which are 48 

stable across movements to different targets and when performing these movements with 49 

either arm. Furthermore, when examining the relationship between cortical variability and 50 

movement variability, we find that cortical fMRI variability in the parietal cortex of individual 51 

subjects explained their movement extent variability. Hence, we were able to explain why 52 

some subjects performed more variable movements than others based on their cortical 53 

variability magnitudes.  54 
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INTRODUCTION 55 

Intertrial variability is a fundamental characteristic of human movements (e.g., 56 

Harbourne and Stergiou, 2009). Variability of specific kinematic components such as 57 

movement extent and movement direction is thought to be governed by independent neural 58 

processes (van Beers, 2009; Gordon et al., 1994a; Krakauer et al., 2000) according to the 59 

demands of the examined motor task  (Latash et al., 2007; Todorov, 2004). While kinematic 60 

variability is detrimental for movement accuracy, it is thought to be critical for motor learning 61 

(e.g., Braun et al., 2009; Herzfeld and Shadmehr, 2014; Teo et al., 2011; Wilson et al., 2008; 62 

Wu et al., 2014).  63 

Intertrial variability is also a fundamental characteristic of neural activity, which is 64 

apparent in the variable timing and amplitude of neural responses across trials containing an 65 

identical stimulus or task (e.g., Churchland and Abbott, 2012; Dinstein et al., 2015; Faisal et 66 

al., 2008; Sauerbrei et al., 2015; Stein et al., 2005). As with kinematic variability, intertrial 67 

neural variability also seems to be important for motor learning as demonstrated in studies 68 

with songbirds (Kao et al., 2005; Ölveczky et al., 2011; Woolley and Kao, 2015) and primates 69 

(Mandelblat-Cerf et al., 2009). Given that neural activity generates behavior, one may expect 70 

that intertrial variability in the activity of specific neural populations would generate 71 

corresponding intertrial variability in specific kinematic components of movement (e.g., 72 

movement extent and/or direction).  73 

Studies that have examined this potential relationship have proposed three alternative 74 

theories. The first theory proposed that kinematic variability during visually guided 75 

movements is mostly explained by variability in sensory neural populations. For example, 76 

intertrial variability in the initial speed of smooth-pursuit eye movements can be explained by 77 

variability in the estimation of target speed in MT neurons (Osborne et al., 2005; for review, 78 

see Lisberger and Medina, 2015). In contrast, the second theory has proposed that kinematic 79 

variability during reaching movements is generated by variable preparatory (motor planning) 80 

activity of premotor and primary motor neurons (Churchland et al., 2006). Finally, the third 81 

theory has suggested that kinematic variability is caused by neural and neuro-muscular 82 

variability during actual movement execution (van Beers, 2009; van Beers et al., 2004). Taken 83 

together, these studies suggest that distinct neural variability sources are correlated with 84 

kinematic variability under different experimental conditions, which include the sensory-motor 85 

requirements of the examined motor task (e.g., smooth-pursuit ocular movements versus 86 

reaching movements) and the temporal structure of the task (e.g., imposing a delay between 87 

movement planning and execution).  88 
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In the current study we examined several outstanding questions regarding kinematic 89 

variability, neural variability, and their potential relationship in humans: 1. Do individual 90 

subjects exhibit consistent magnitudes of kinematic variability regardless of the movements 91 

that they are performing? 2. Do individual subjects exhibit consistent magnitudes of neural 92 

variability regardless of the movements that they are performing? 3. If so, are between-subject 93 

differences in kinematic variability explained by differences in neural variability in specific 94 

sensory and/or motor brain areas? Answering these questions is critical for establishing that 95 

individual subjects exhibit characteristic kinematic and neural variability magnitudes that may 96 

predispose them to exhibit particular motor learning capabilities while also adding new 97 

insights regarding the potential relationship between neural variability and kinematic 98 

variability. 99 

To answer the questions above and relate the findings with the existing behavioral and 100 

electrophysiology literature we quantified intertrial variability of movement direction, peak 101 

velocity, and extent across slice (out-and-back) reaching movements. These movements were 102 

performed to four peripheral targets with either right or left arm on a touch screen while brain 103 

activity was recorded with fMRI. We then quantified fMRI response variability in the primary 104 

motor, premotor, parietal, and visual brain areas of each subject and examined whether it was 105 

possible to explain between-subject differences in kinematic variability according to neural 106 

variability magnitudes in specific brain areas. Note that in our study all movements were 107 

performed without visual feedback to preclude the potential influence of neural variability 108 

associated with visual input. 109 

METHODS 110 

Subjects. 32 right-handed volunteers with normal or corrected-to-normal visual acuity 111 

(15 women and 17 men, aged 22-36 (25.6±2.5)) participated in the present study. The Soroka 112 

Medical Center Internal Review Board approved the experimental procedures and written 113 

informed consent was obtained from each subject. The sample size was selected so that the 114 

correlation effect size of 0.4 would have power greater than 1 − β = 0.75 (one-tailed test), with 115 

α set to 0.05. According to G*Power (Faul et al., 2009), the required minimum sample size is 116 

30. 117 

Experimental Setup and Design. Subjects lay in the scanner bore and viewed a back-118 

projected screen through an angled mirror, which prevented any visual feedback of their arm 119 

and hand. An MRI-compatible digitizing tablet (Hybridmojo LLC, CA, USA) was placed over 120 

the subject’s waist and used to track their arm movements (Figure 1A). Subjects performed 121 

slice (out-and-back) reaching movements from a central target to four peripheral targets 122 
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located 7 and 13 cm from the central 123 

target in each of two directions, ±45° 124 

from the midline (Figure 1B). Subjects 125 

did not receive any visual feedback of 126 

their arm location during movement. 127 

Each trial started with the presentation 128 

of a peripheral target for one second. 129 

Four seconds after the target 130 

disappeared, the central target changed 131 

from red to green, indicating that the movement should be performed by moving the stylus pen 132 

on the tablet. Subjects had one second to complete the movement after which the center target 133 

turned red and remained red for the entire inter-trial-interval (ITI), which lasted six seconds. 134 

There was no post-trial visual feedback or knowledge-of-results. All subjects performed three 135 

experimental runs with each arm, each lasted 9 minutes and contained 11 movements to each 136 

of the four targets in a random order. The experiment started with three runs of the left (non-137 

dominant) arm, followed by three runs of the right (dominant) arm. Subjects were trained on 138 

the task inside the scanner with both hands, before the scan, until they reported that they were 139 

comfortable performing it.   140 

Movement Recording and Analysis. Kinematic data were recorded at 200 Hz. Trials 141 

with a reaction time of more than 1 second, trials with a movement angle error >30o (at peak 142 

velocity or end point), and trials with movement length that was <50% or >200% of the target 143 

distance were discarded from further analysis. Trials containing correction movements (i.e., 144 

velocity profiles with more than two peaks) were also removed. On average approximately 8% 145 

(std 3%) of the trials were discarded for each subject. There was no significant difference in 146 

the number of discarded trials between the two arms.  147 

We quantified intertrial variability for each of three kinematic components: movement 148 

direction, movement extent, and peak movement velocity. Movement extent and peak velocity 149 

variabilities were normalized by their respective means so as to compute the coefficient of 150 

variation (CV). This was necessary, because the variability of these kinematic components 151 

scales with their mean (speed-accuracy trade-off; Schmidt et al., 1979). Movement direction 152 

variability was quantified by the standard deviation (SD) across trials. Each of these measures 153 

was computed for each target and each subject separately and then averaged across targets to 154 

compute a single extent, peak velocity, and direction variability measure for each subject. 155 

MRI acquisition and preprocessing. Imaging was performed using a Philips Ingenia 156 

3T MRI scanner located at the Ben-Gurion University Brain Imaging Research Center. The 157 

scanner was equipped with a 32 channel head coil, which was used for RF transmit and 158 

Figure 1. (A) Experimental setup. (B) Representative 
example of movement paths of one subject. Different 
colors represent slice movements to the four targets.  
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receive. Blood oxygenation level-dependent (BOLD) contrast was obtained using a T2* 159 

sensitive echo planar imaging (EPI) pulse sequence (TR = 2000 ms; TE = 35 ms; FA = 90o; 28 160 

slices; voxel size of 2.6*2.6*3 mm and with 0.6 mm gap). Anatomical volumes were acquired 161 

with a T1-weighted sagittal sequence (TR = 8.165 ms; TE = 3.74 ms; FA = 8o; voxel size of 162 

1*1*1 mm).  163 

MRI data were preprocessed with the Freesurfer software package 164 

(http://surfer.nmr.mgh.harvard.edu, Fischl, 2012) and  FsFast (Freesurfer Functional Analysis 165 

Stream). Briefly, this process includes removal of non-brain tissue and segmentation of 166 

subcortical, gray, and white matters based on image intensity. Individual brains were 167 

registered to a spherical atlas which utilized individual cortical folding patterns to match brain 168 

geometry across subjects. Each brain was then parcellated into 148 cortical ROIs using the 169 

Destrieux anatomical atlas (Destrieux et al., 2010). Functional scans were subjected to motion 170 

correction, slice-timing correction and temporal high-pass filtering with a cutoff frequency of 171 

two cycles per scan. Functional scans were registered to the high-resolution anatomical 172 

volume. No additional spatial smoothing was performed. Preprocessed data was imported into 173 

MATLAB (R2015a, MathWorks Inc. USA), and all further analysis was performed using 174 

custom software written in matlab.  175 

Time course analysis. To ensure that our estimates of intertrial fMRI variability were 176 

not generated by head motion, respiration, and blood flow artifacts, we removed the following 177 

components from the fMRI time-course of each cortical voxel, through linear regression: (1) 178 

six head motion parameters obtained by rigid body correction of head motion (three 179 

translations and three rotations), (2) fMRI time-course from the lateral ventricles, and (3) the 180 

mean fMRI signal of the entire cortex (i.e., global component). In addition, we normalized the 181 

time-course of each voxel to a mean of zero and unit variance (i.e., Z-score). This ensured that 182 

overall time-course variance was equal across subjects such that our measure of inter-trial 183 

fMRI variability captured only task-related trial-by-trial variability differences across subjects 184 

rather than variability associated with the entire scanning session. 185 

Identification of regions of interest. Visual and motor regions of interest (ROIs), in 186 

both left and right hemispheres, were defined a priori according to a combination of 187 

anatomical and functional criteria in the native space of each subject. We first used the 188 

automated Freesurfer parcellation pipeline to identify 148 anatomical ROIs in each of the 189 

subjects, based on the Destrieux anatomical atlas (Destrieux et al., 2010). We then selected the 190 

100 continuous functional voxels that exhibited the strongest activation when contrasting all 191 

movement trials versus rest. To confine the ROIs to specific anatomical locations across all 192 

subjects, we selected the voxels within the following Freesurfer ROIs: Early visual cortex 193 

(Vis) - Occipital pole and calcarine sulcus; Superior parietal lobule (SPL) - Anterior portion of 194 

http://surfer.nmr.mgh.harvard.edu/
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the superior parietal lobule, superior to the IPS and slightly posterior to the postcentral sulcus; 195 

Inferior parietal lobule (IPL) - Dorsal portion of the angular gyrus and the middle segment of 196 

the intraparietal sulcus; Primary motor cortex (M1) - anterior bank of the central sulcus in the 197 

hand knob area; Dorsal premotor cortex (PMd) - Junction of superior frontal sulcus and 198 

precentral sulcus; Ventral premotor cortex (PMv) - Junction of inferior frontal sulcus and 199 

precentral sulcus; and Supplementary motor area (SMA) - Medial wall of the superior frontal 200 

gyrus, anterior to the central sulcus, posterior to the vertical projection of the anterior 201 

commissure. 202 

We also defined control ROIs that did not exhibit task-related activations in the 203 

dorsolateral prefrontal cortex (dlPFC) - middle frontal sulcus, and 8 ROIs located outside the 204 

brain/head of the subject (one ROI in each corner of the scanned volume). These control ROIs 205 

enabled us to demonstrate the specificity of the results to the visuomotor cortices. The choice 206 

of dlPFC as a control area was motivated by its proximity to the premotor areas and lack of 207 

task-related activity.  208 

Intertrial fMRI variability. Variability across trials was computed for each subject 209 

separately, relative to their mean hemodynamic response in each ROI. We estimated a 210 

hemodynamic response function (HRF) for each subject, ROI, and target by computing the 211 

mean response across all trials to a given target. Then, we built a general linear model (GLM) 212 

with a row for every time-point and a column for every trial. Each column contained a delta 213 

function at the time point corresponding to the go cue (movement onset), which was 214 

convolved with the HRF described above. This enabled us to estimate a response amplitude 215 

(beta value) for each trial using multiple regression. Note that by using individual subject 216 

HRFs for this analysis, we were able to entirely discount the mean HRF amplitude and shape 217 

from our estimates – yielding a pure (isolated) measure of individual intertrial variability 218 

relative to the mean.   219 

Intertrial fMRI variability was estimated as the standard deviation across beta values 220 

(trials) to each of the targets. Before examining the correlations of individual fMRI variability 221 

magnitudes across targets and arms, we first regressed-out the subjects’ framewise 222 

displacement magnitudes. This ensured that individual fMRI variability measures were not 223 

generated by potential differences in head motion (Power et al., 2012).  224 

Correlations. We used Pearson correlation coefficients to assess whether individual 225 

kinematic variability magnitudes were correlated across targets, arms, and different kinematic 226 

components. Equivalent analyses were performed to examine whether individual fMRI 227 

variability magnitudes (in each of the examined ROIs) were correlated across targets and arms 228 

as well as between the variability of each kinematic component and fMRI variability in each 229 
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ROI. We assessed the statistical significance using a permutation tests. We randomly shuffled 230 

the variability values of the different subjects in each correlation analysis and computed the 231 

correlation. This process was repeated 5000 times to generate 5000 correlation values that 232 

represented a distribution of correlations expected by chance (null distribution). For the true 233 

(un-shuffled) value to be considered significant, it had to surpass the 97.5th percentile of the 234 

null distribution (i.e., the equivalent of a p < 0.05 value in a two-tailed t-test). We used the 235 

false discovery rate (FDR) correction (Benjamini and Hochberg, 1995; Yekutieli and 236 

Benjamini, 1999) to correct for the multiple comparisons across target pairs and across ROIs. 237 

Searchlight analysis. In addition to the ROI analysis, we used a searchlight analysis 238 

(Kriegeskorte et al., 2006) to map the correlations between fMRI variability and kinematic 239 

variability (i.e., movement extent, peak velocity, or direction) throughout the entire cortex. 240 

Clusters of 125 functional voxels were defined using a cube with an edge length of 5 voxels 241 

around each gray matter voxel in the native space of each subject. fMRI variability was 242 

calculated for each cluster of voxels, as described above in the ROI analysis. After computing 243 

the variability map of each subjects, all maps were transformed to a standard cortical surface 244 

using Freesurfer, and correlation analysis between kinematic and fMRI variabilities were 245 

performed for each kinematic measure using movements performed by either right or left arm. 246 

This yielded six correlation maps (three kinematic variables and two arms). A student t-test 247 

was used to determine the significance of the correlation across subjects in each vertex. We 248 

used FDR correction to correct for the multiple comparisons performed across vertices 249 

(Storey, 2002). 250 

RESULTS 251 

Intertrial kinematic Variability.  252 

Subjects exhibited considerable intertrial kinematic variability in their slice (out-and-253 

back) movements to each of the four targets (Figure 1B). We focused our analyses on three 254 

kinematic components: direction (at end-point) and extent, which are commonly reported in 255 

behavioral studies (van Beers, 2009; Gordon et al., 1994a; Krakauer et al., 2000), and peak 256 

velocity, which is commonly reported in electrophysiology studies (Churchland et al., 2006; 257 

Cisek, 2006). Note that movement extent and peak velocity are mutually dependent, because 258 

peak velocity scales with increasing target distance (Gordon et al., 1994b).  259 

In line with previous findings, we found that the variance of movement extent and 260 

peak velocity grew with the mean (correlation across subjects: r = 0.35 and r = 0.53 261 

respectively, averaged across targets and arms). To examine differences in intertrial variability 262 

not explained by differences in the mean, we used the coefficient of variation (CV). In 263 
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contrast, mean movement direction was not correlated with its standard deviation across trials 264 

(r < 0.1). There was, therefore, no reason to normalize this measure, so we used the standard 265 

deviation (SD) across trials to quantify movement direction variability. 266 

 267 

When examining each of the kinematic components separately, individual subjects 268 

exhibited consistent magnitudes of intertrial variability across movements to different targets 269 

(Figure 2A&B). Thus, subjects who were, for example, more variable in their movement 270 

extents to one target tended to be more variable in their movement extents to all other targets. 271 

We quantified this by computing the mean Pearson correlation coefficients across all target 272 

pairs for movements performed with the right arm (r = 0.29, 0.41, and 0.39 for movement 273 

direction, extent, and peak velocity respectively, q(FDR) < 0.001) and left arm (r = 0.46, 0.58, 274 

and 0.40 for movement direction, extent, and peak velocity respectively, q(FDR) < 0.001). 275 

Significant correlations were also evident when comparing the variability magnitudes of each 276 

kinematic component across arms (Figure 2C). For example, subjects with more variable 277 

Figure 2. Kinematic variability 
correlations. We computed 
the intertrial variability of 
movement direction (green), 
extent (dark blue), and peak 
velocity (light blue) across 
movements to each target for 
each of the subjects. (A) 
Individual magnitudes of 
intertrial variability were 
strongly correlated across the 
two proximal targets (i.e., 
regardless of direction).  (B) 
Means and SEM of the 
Pearson correlations of the 
variability across all pairs of 
targets. Significant 
correlations are marked with 
asterisks. (C) Scatter plots of 
the kinematic variability, 
averaged across targets, of 
the right and left arms. Each 
data point represents 
variability of movements of a 
single subject. (D,E) Scatter 
plots of the kinematic 
variability, averaged across 
targets, of the right (D) and 
the left (E) arms. For all 
scatter plots: data points 
represent different subjects; 
lines represent linear fits. 
Significant correlations are 
marked with red asterisks. 
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movement extents in right arm movements exhibited more variable movement extents in left 278 

arm movements as well (r = 0.65, 0.67, and 0.55 for movement direction, extent, and peak 279 

velocity, p < 0.001). 280 

In line with previous reports (Gordon et al., 1994b), intertrial variability of movement 281 

extent and peak velocity were strongly correlated in movements of the right arm (r = 0.73, 282 

p < 0.001; Figure 2D) and left arm (r = 0.87, p < 0.001; Figure 2E), but variability of 283 

movement extent and movement direction (right arm: r = 0.06, p = 0.37; left arm: r = 0.27, p = 284 

0.07) or peak velocity and movement direction (right arm: r = -0.06, p = 0.62; left arm: 285 

r = 0.17, p = 0.17) were not. Thus, individuals who exhibited large movement extent and peak 286 

velocity variabilities did not necessarily exhibit large movement direction variability and vice 287 

versa. 288 

 289 

Intertrial fMRI variability 290 

All subjects exhibited robust fMRI 291 

responses during the execution of 292 

movements, which enabled us to identify six 293 

cortical ROIs that are commonly examined 294 

in motor system studies (Figure 3): Primary 295 

Motor Cortex (M1), dorsal premotor cortex 296 

(PMd), ventral premotor cortex (PMv), 297 

supplementary motor area (SMA), superior 298 

parietal lobule (SPL), and inferior parietal 299 

lobule (IPL). In addition to the motor ROIs 300 

we also identified ROIs in early visual 301 

cortex (Vis), dorsolateral prefrontal cortex 302 

(dlPFC), and outside the brain (OOB).  303 

 304 

 305 

Figure 3. Cortical activation during movement execution. 
Cortical areas that exhibited larger responses during 
movement than rest are shown in red/orange. Results 
were calculated across all subjects (random-effects GLM) 
and displayed on inflated hemispheres of a template 
brain. The general locations of the selected ROIs are 
noted (actual ROIs were anatomically and functionally 
defined in each subject – see Methods): Primary motor 
cortex (M1), dorsal premotor cortex (PMd), ventral 
premotor cortex (PMv), supplementary motor area 
(SMA), inferior parietal lobule (IPL), superior parietal 
lobule (SPL), dorsolateral prefrontal cortex (dlPFC), and 
early visual cortex (Vis). 
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 306 

We then quantified intertrial fMRI variability in each of the ROIs, separately for each 307 

subject, in the following manner: First, we estimated the hemodynamic response function 308 

(HRF) in each ROI for each target by averaging the fMRI responses across all movements to 309 

that target (Figure 4A). We then used the target-specific HRF in a GLM analysis to estimate a 310 

response amplitude/beta-value for each trial/movement in the experiment (Figure 4B). Note 311 

that using a target-specific HRF enabled us to compute single trial responses/beta-values 312 

relative to the mean HRF of each subject. This approach discounted potential between-subject 313 

differences in the mean amplitude and shape of individual HRFs. Finally, we quantified 314 

intertrial fMRI variability by computing the standard deviation across beta-values for each of 315 

the targets (Figure 4B&C).  316 

Intertrial fMRI variability was correlated across all pairs of targets in most of the 317 

examined ROIs (Figure 5A). Hence, subjects who exhibited more variable brain responses 318 

when moving to one target also exhibited more variable brain responses when moving to other 319 

targets. During right arm movements all ROIs in the left hemisphere except dlPFC, and all 320 

ROIs in the right hemisphere except PMd and dlPFC, exhibited significant pair-wise 321 

correlations across targets (r > 0.32 , q(FDR) < 0.05). Correlations in the dlPFC and out of 322 

brain (OOB) ROIs were not significant (r < 0.26, q(FDR) > 0.1). Taken together, these 323 

findings demonstrate that correlation in fMRI variability magnitudes across targets was 324 

specific to cortical ROIs that were activated by the task. Note that early visual cortex was 325 

Figure 4. fMRI Variability. Examples of intertrial fMRI variability as quantified in left M1 of 3 subjects 
during right arm movements. (A) Single trial fMRI responses from left M1 are presented in z-scored 
units; color coded according to the different targets, mean HRF across trials (i.e., the HRF used in the 
GLM analysis) is presented in black. Time point zero corresponds to presentation of the go cue. (B) 
Boxplots demonstrating the distributions of beta-values per target. (C) Standard deviation (SD) across 
beta values for each target (color code is the same as in A). The mean SD across targets is represented 
by the black circle. Each row represents data from a single subject. 
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weakly activated in this task by the presentation of the target location at the beginning of each 326 

trial and the presentation of the go cue 5 seconds later. The significant correlations across 327 

targets in early visual cortex demonstrate that some subjects exhibited larger intertrial fMRI 328 

variability in visual cortex than others, regardless of the movement’s target. This phenomena 329 

was recently demonstrated by our lab (Arazi et al., 2017a, 2017b). Similar results were also 330 

apparent for left arm movements. 331 

Individual magnitudes of fMRI variability were also significantly correlated across 332 

right and left arm movements in many of the examined motor ROIs (Figure 5B). This was 333 

evident in all ROIs in the left hemisphere (r > 0.43, q(FDR) < 0.05; Figure 5B, red bars) 334 

except for M1 and dlPFC, and in the SPL, PMd, and SMA in the right hemisphere (r > 0.47, 335 

q(FDR) < 0.05; Figure 5B, yellow bars). In addition, fMRI variability magnitudes were 336 

significantly correlated across left and right arm movements in contralateral SPL, PMd, and 337 

SMA ROIs (r > 0.48, q(FDR) < 0.05; Figure 5B, purple bars). This means that, for example, 338 

variability in left PMd during right arm movements was significantly correlated with 339 

variability in right PMd during left arm movements. Note that consistent fMRI variability 340 

across targets and hands was mostly apparent in parietal and prefrontal motor areas, yet was 341 

entirely absent in M1. Correlations in the dlPFC and out of brain (OOB) ROIs were not 342 

significant (r < 0.33, q(FDR) > 0.09). This demonstrates that consistent fMRI variability 343 

differences across subjects were not due to differences in scanner measurement noise across 344 

subjects. Such scanner noise differences would be apparent in multiple ROIs and even in ROIs 345 

located outside the brain. 346 



Relating neural and movement variability 

54 
 

347 
  348 

Relationship between kinematic and fMRI variability  349 

Subjects with larger intertrial fMRI variability in the IPL exhibited larger intertrial 350 

extent variability (Figure 6). We examined to what extent between-subject differences in 351 

kinematic variability could be explained by fMRI variability measures in right and left ROIs 352 

using partial least squares regression. We performed this analysis separately for right and left 353 

hand movements and then averaged across hands. Intertrial fMRI variability in right and left 354 

IPL explained 24% (q(FDR) = 0.004) of the between-subject differences in extent variability, 355 

15% of the variability in the peak velocity, and 8% of the variability in movement direction. 356 

The IPL was the only ROI where there was a significant relationship between fMRI variability 357 

magnitudes and any of the kinematic variability measures. In contrast, intertrial fMRI 358 

variability in M1 explained only 2%, 5%, and 4% (q(FDR) > 0.5) of the between-subject 359 

Figure 5. Cortical variability correlations. fMRI variability magnitudes during right (A) and left (B) arm 
movements were correlated across all target pairs. Mean pair-wise correlation coefficients are 
presented for each left hemisphere (red) and right hemisphere (yellow) ROI. (C) fMRI variability 
magnitudes were correlated across right and left arm movements in left hemisphere ROIs (red), right 
hemisphere ROIs (yellow) and in contra-lateral ROIs (purple). Significant correlations are marked with 
red asterisks. 
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differences in direction, extent, and peak velocity variability respectively. Correlations were 360 

not significant in all the control ROIs (dlPFC and out of brain, R2 < 8%, q(FDR) > 0.2). 361 

 362 

Searchlight analysis 363 

To examine the spatial selectivity of the cortical-kinematic relationship we performed 364 

an additional analysis using a whole-brain searchlight approach (Kriegeskorte et al., 2006). 365 

We mapped the correlations between kinematic variability magnitudes and fMRI variability 366 

magnitudes across the entire cortical surface, so as not to restrict the analysis to a-priori ROIs. 367 

We used a volumetric searchlight cube of 125 functional voxels in the cortical gray matter 368 

segmented within the native space of each subject. For each searchlight cube, we calculated 369 

the intertrial fMRI variability (as described above for the ROIs) and then registered the 370 

resulting variability maps of all subjects to a common inflated brain. We calculated Pearson 371 

correlation coefficients to estimate the relationship between intertrial fMRI variability 372 

magnitudes and variability magnitudes of each kinematic variable: movement extent, peak 373 

velocity, and direction.  374 

This analysis yielded three searchlight maps that revealed complementary results to 375 

those described above. We did not find any cortical areas where fMRI variability magnitudes 376 

were significantly correlated with variability magnitudes in movement direction or peak 377 

velocity. Significant positive correlations, however, were found in bi-lateral inferior parietal 378 

cortex when examining movement extent (Figure 7). Note that the searchlight map is highly 379 

symmetric across hemispheres and is relatively similar across movements of the right (Figure 380 

7, Red) and left (Figure 7, Blue) arms.  381 

Figure 6. Kinematic Variability explained by fMRI Variability. Multiple regression was performed between 
fMRI variability magnitudes in each pair of ROIs (right and left hemispheres) and variability magnitudes of 
each kinematic variable: direction (green), extent (dark blue), or peak velocity (light blue). This analysis 
was performed separately for right and left hand movements and the results were averaged. Significant 
explained variance is marked with red asterisks (q(FDR) < 0.05). 
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 382 

Alternative sources of fMRI variability 383 

Between subject differences in fMRI variability can be generated by several non-384 

neural sources that need to be considered. First, previous studies of fMRI variability have 385 

reported that the strength of the mean fMRI response was correlated with the magnitude of 386 

intertrial variability across subjects (Ferri et al., 2015; He, 2013). To measure intertrial fMRI 387 

variability in individual subjects independently of their mean response, we estimated intertrial 388 

variability with respect to the mean hemodynamic response function (HRF) apparent in each 389 

ROI of each subject (see methods). This enabled us to compute the relative fMRI variability 390 

with respect to the actual HRF as opposed to using a canonical HRF that assumes an identical 391 

shape and amplitude across subjects. Indeed, when using this method, intertrial fMRI 392 

variability was not correlated significantly with mean fMRI response in any of the ROIs (r < 393 

0.15, p > 0.1). 394 

Second, we regressed-out the mean fMRI time-courses of the lateral ventricles and an 395 

ROI containing all gray-matter voxels (i.e., “global component”). These time-courses 396 

represent fMRI fluctuations that may, in part, be associated with changes in respiration, blood 397 

pressure, and other non-neural origins. 398 

Third, head-motion artifacts can generate fMRI variability across trials. To ensure that 399 

our results were not generated by head-motion artifacts, we regressed-out estimated head-400 

motion parameters from the fMRI activity of each voxel in the brain before performing the 401 

analyses (see methods). Furthermore, we also computed the mean framewise displacement 402 

across head-motion parameters (i.e., the mean amount of head motion across samples/TRs) for 403 

each subject. We regressed-out individual values of framewise displacement from the fMRI 404 

variability magnitudes before examining correlations across targets and/or arms. This ensured 405 

that the reported between-subject differences in fMRI variability magnitudes were not 406 

generated by underlying differences in head motion across subjects.  407 

Figure 7. Searchlight analysis 
displaying cortical areas with 
significant correlations between 
movement extent variability and 
fMRI variability across subjects. 
Results for right (red) and left 
(blue) arm movements are 
presented on the inflated 
cortical anatomy of a single 
subject. Correlation significance 
was determined based on a 
student t-test (FDR corrected). 
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DISCUSSION 408 

Our results reveal that individual subjects exhibit distinct magnitudes of kinematic 409 

variability, which are consistent across movements to different locations when performed by 410 

either arm. Individual variability magnitudes in movement extent, peak velocity, or direction 411 

were strongly correlated across different targets and across arms (Figure 2). This means that an 412 

individual who exhibits large movement extent variability to one target is likely to exhibit 413 

large movement extent variability to all other targets regardless of the arm that the subject uses 414 

to perform the movements. 415 

 Analogous findings were also apparent when examining fMRI variability magnitudes 416 

of individual subjects (Figures 5). Subjects with larger fMRI variability magnitudes in most of 417 

the examined motor areas tended to exhibit larger variability regardless of target location or 418 

arm used to perform the movements. A surprising exception was M1, where fMRI variability 419 

magnitudes were not consistent across arms. This suggests that cortical variability magnitudes 420 

in parietal and premotor motor system areas are relatively stable individual characteristics, 421 

while cortical variability magnitudes in M1 may represent more transient states that change 422 

with the choice of effector or task.   423 

The results also revealed a specific relationship between variability magnitudes in one 424 

of the kinematic measures, movement extent, and cortical variability magnitudes in one brain 425 

area, the IPL. Indeed, fMRI variability magnitudes in the IPL explained 24% of the differences 426 

in movement-extent variability across subjects. In contrast, fMRI variability magnitudes in M1 427 

explained only 5% of between-subject differences in movement-extent variability (Figure 6). 428 

The specificity of these results was further validated by a searchlight analysis that revealed 429 

significant correlations between the kinematic and cortical variability magnitudes only with 430 

respect to movement extent and only in IPL (Figure 7). Parietal cortex is thought to play key 431 

roles in motor planning, sensory motor mapping, and state estimation (Buneo and Andersen, 432 

2006). We, therefore, suggest that a considerable portion of movement-extent variability is 433 

generated by cortical variability associated with movement preparation, rather than cortical 434 

variability associated with movement execution. 435 

Note that this is the first study to ever examine the consistency of kinematic variability 436 

across targets/hand and relate it with cortical response variability in humans. Contemporary 437 

models of motor control and motor learning (Pekny et al., 2015; Wolpert and Flanagan, 2016) 438 

emphasize the importance of intertrial-variability for motor system flexibility and accuracy. 439 

For example, it has been reported that individuals with larger intertrial behavioral variability 440 

learn new motor tasks more quickly (Wu et al., 2014). Note that while larger intertrial-441 

variability may be useful for flexibility and learning, variability in movement accuracy across 442 
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trials is often detrimental. We, therefore, speculate that the stable between-subject differences 443 

in cortical and kinematic variability magnitudes described here are likely to predispose 444 

individual subjects to exhibit different motor capabilities.     445 

Neural sources of kinematic variability  446 

Previous theories have suggested that intertrial kinematic variability is predominantly 447 

generated by the variable activity of sensory neural populations (Osborne et al., 2005; for 448 

review, see Lisberger and Medina, 2015), PMd and M1 neural populations involved in motor 449 

planning (Churchland et al., 2006), or by neuro-muscular variability that characterizes actual 450 

movement execution (van Beers, 2009; van Beers et al., 2004). It is entirely possible, however, 451 

that different sources of neural variability generate kinematic variability under different 452 

experimental conditions, such that behavioral motor variability would embody the sum of 453 

multiple neural variability sources (for review see Faisal et al., 2008). With this in mind, 454 

neural variability in a particular brain area is likely to explain a certain proportion of kinematic 455 

variability. Furthermore, neural variability in different brain areas may generate variability in 456 

different kinematic components of movements (e.g., movement extent versus movement 457 

direction). 458 

Our results indeed demonstrate that about a quarter of the between-subject differences 459 

in movement extent variability are explained by individual neural variability differences in 460 

parietal cortex, which is thought to play a dominant role in the planning and preparation of 461 

reaching movements (Cohen and Andersen, 2002). While previous electrophysiology studies 462 

have reported that variability in M1 and PMd neural activity (during preparation for 463 

movement) generates variability in peak movement velocity (Chaisanguanthum et al., 2014; 464 

Churchland et al., 2006), our results suggest that stronger relationships between neural and 465 

kinematic variability will be evident in parietal brain areas and particularly in IPL (Figure 466 

6&7).   467 

It may seem surprising that correlations between kinematic variability and fMRI 468 

variability were weak in M1 given that it is the lowest area in the cortical motor hierarchy 469 

(e.g., Shadmehr and Krakauer, 2008). In humans, however, only 30% to 40% of the axons in 470 

the corticospinal tract originate from neurons in M1, while the rest originate from the 471 

premotor, supplementary motor, and posterior parietal cortices (Kandel et al., 2013). This 472 

means that neural variability in parietal regions may potentially generate kinematic variability 473 

downstream of M1, in spinal motor circuits. A potentially interesting analogy can be found in 474 

songbirds where the lateral magnocellular nucleus of anterior nidopallium has evolved to 475 

inject direct neural variability into the motor circuits that control singing – apparently enabling 476 

juvenile birds to learn through trial and error (Ölveczky et al., 2011).  477 
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Parietal cortex contains neural populations that perform a wide variety of 478 

computations that are essential for motor control including motor planning, sensory-motor 479 

mapping, and state estimation (Buneo and Andersen, 2006; Churchland et al., 2006; Cohen 480 

and Andersen, 2002; Shadmehr and Krakauer, 2008; Wolpert and Ghahramani, 2000). More 481 

specifically, neural populations in the IPL are thought to integrate high-order sensory and 482 

motor information in support of high-level motor functions (Fogassi and Luppino, 2005), and 483 

represent conscious motor intentions (Desmurget and Sirigu, 2012). Within all of these 484 

frameworks, each with its specific mechanistic focus, variability in the activity of parietal 485 

neural populations would generate variability in the kinematics of executed movements.  486 

An alternative interpretation of our results might emphasize the sensory roles of 487 

parietal cortex. In this case the causality would be reversed such that the measured fMRI 488 

variability would be generated by movement variability (and not the other way around). While 489 

it is difficult to entirely rule this option out, it is important to note that we did not find 490 

significant correlations between any of the kinematic measures and fMRI variability 491 

magnitudes in somatosensory cortices (Figure 7). The selectivity of the results to IPL argues 492 

against such a sensory driven explanation of the results.  493 

Finally, it is important to note that we and all previous electrophysiology studies on 494 

the topic measured variability only in the kinematics of the movements and not in their 495 

dynamics. It is highly possible that intertrial-variability in movement dynamics (i.e., muscle 496 

activation), which are not necessarily captured in measures of kinematic variability, may be 497 

explained by intertrial neural variability in specific brain areas.   498 

Decomposing neural variability 499 

Neural variability is likely to arise from a wide variety of molecular and cellular 500 

mechanisms that govern neural transduction and transmission in addition to mechanisms that 501 

govern neural network dynamics. While it is difficult to disentangle the different sources of 502 

neural variability using neuroimaging, it is possible to decompose variability into different 503 

spatial and temporal components using measures from different types of neuroimaging and 504 

electrophysiological techniques (Dinstein et al., 2015). When studying variability with fMRI, 505 

it is possible to simultaneously quantify intertrial-variability in multiple different brain areas, 506 

but the temporal resolution of this measure is limited by the sluggish nature of the 507 

hemodynamic response (Heeger and Ress, 2002). Furthermore, since fMRI is not a direct 508 

measure of neural activity, but rather a measure of hemodynamic changes over time, intertrial-509 

variability in the function of neuro-vascular coupling mechanisms will be an inherent part of 510 

the fMRI intertrial-variability measure.  This limits the ability to measure neural variability 511 

with fMRI and, therefore, limits the ability to relate neural variability and behavioral 512 
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variability measures. With this in mind it is impressive that we were able to identify a 513 

consistent relationship between fMRI variability and movement extent variability which was 514 

similarly evident in movements of right and left arm (Figure 6&7). We speculate that stronger 515 

relationships may be revealed with direct measures of human neural activity such as ECOG 516 

recordings. 517 

Hemispheric lateralization 518 

While arm movements are clearly generated and controlled by neural activity in the 519 

contralateral hemisphere (Penfield and Boldrey, 1937), human fMRI studies show activity and 520 

even directional selectivity of arm movement (Fabbri et al., 2010; Haar et al., 2015) across the 521 

cortical motor hierarchy in the ipsilateral hemisphere. Here, we found significant correlations 522 

between movement extent variability and neural variability in both the contralateral and 523 

ipsilateral hemispheres. We speculate that neural variability in both hemispheres may, 524 

therefore, have an impact on the accuracy and reliability of arm movements.  525 

Conclusions 526 

This study demonstrates that kinematic variability and parietal and pre-frontal cortical 527 

variability are stable individual traits, which appear consistently across movements to different 528 

targets when performed by either arm. Furthermore, these variabilities are related such that 529 

subjects with larger neural variability in IPL exhibited larger movement-extent variability. We 530 

believe that these results represent an important first step for understanding how neural 531 

variability may generate movement variability in humans and, thereby, predispose individuals 532 

to exhibit distinct motor capabilities such as motor learning proficiency. 533 

  534 
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