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Abstract 29 

Ipsilateral motor areas of cerebral cortex are active during arm movements and even 30 

reliably predict movement direction. Is coding similar during ipsilateral and contralateral 31 

movements? If so, is it in extrinsic (world-centered) or intrinsic (joint-configuration) 32 

coordinates? We addressed these questions by examining the similarity of multi-voxel fMRI 33 

patterns in visuomotor cortical regions during unilateral reaching movements with both arms. 34 

The results of three complementary analyses revealed that fMRI response patterns were 35 

similar across right and left arm movements to identical targets (extrinsic coordinates) in 36 

visual cortices, and across movements with equivalent joint-angles (intrinsic coordinates) in 37 

motor cortices. We interpret this as evidence for the existence of distributed neural 38 

populations in multiple motor system areas that encode ipsilateral and contralateral 39 

movements in a similar manner: according to their intrinsic/joint coordinates.  40 

 41 

Significance Statement: Cortical motor control exhibits clear lateralization: each hemisphere 42 

controls the motor output of the contralateral body. Nevertheless, neural populations in 43 

ipsilateral areas across the visuomotor hierarchy are active during unilateral movements. 44 

We show that fMRI response patterns in the motor cortices are similar for both arms if the 45 

movement direction is mirror-reversed across the midline. This suggests that in both 46 

ipsilateral and contralateral motor cortices, neural populations have effector-invariant 47 

coding of movements in intrinsic coordinates. This not only affects our understanding of 48 

motor control, it may serve in the development of brain machine interfaces that also utilize 49 

ipsilateral neural activity.  50 
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Introduction 51 

Cortical motor control exhibits clear lateralization where each hemisphere mainly 52 

controls the motor output of the contralateral side of the body as demonstrated by the 53 

lateralization of cortical connectivity with the muscles (Penfield and Boldrey, 1937). 54 

Nevertheless, neural populations in ipsilateral motor areas are active during unilateral 55 

movements and exhibit reliable directional selectivity during reaching movements to 56 

peripheral targets (Cisek et al., 2003; Donchin et al., 1998). Neurons in the primary motor 57 

cortex (M1) can even represent ipsilateral limb position continuously (Ganguly et al., 2009). 58 

This directional selectivity during movements of the ipsilateral arm is not limited to the 59 

primary motor cortex but distributed across multiple cortical areas involved in movement 60 

planning and execution, as was shown in humans using fMRI (Fabbri et al., 2010; Haar et al., 61 

2015). It is still unclear to what extent the representation of hand movement is similar for 62 

ipsilateral and contralateral movements in cortical visuomotor brain areas. 63 

Ipsilateral arm movement directions have been decoded in humans using different 64 

techniques including EEG (Bundy et al., 2012), ECoG (Hotson et al., 2014), and fMRI 65 

(Fabbri et al., 2010; Haar et al., 2015). However, neural representations of contra- and 66 

ipsilateral movements are not often compared. We tested whether the directional selectivity of 67 

fMRI activity patterns during reaching movements with the two arms suggests an effector-68 

invariant representation of movement. Such effector-invariant representation may be in 69 

extrinsic (world) coordinates or in intrinsic (muscles and joints) coordinates, or in a mixture 70 

of the two. In a previous study (Haar et al., 2015), we showed that changing the relationship 71 

of arm movement and cursor movement does not affect movement representation in motor 72 

cortices. This “motor oriented” representation might suggest that motor cortices represent 73 

movements in an intrinsic/joint coordinate system. However, previous work on bilateral 74 

representation in individual motor cortical neurons gives a mixed picture. Some neurons in 75 

M1 show similar directional tuning bilaterally in extrinsic coordinates, others show similar 76 

tuning in intrinsic coordinates, and others show no similarity in either coordinate system 77 

(Cisek et al., 2003; Steinberg et al., 2002). We consider the possibility that an fMRI 78 

exploration of bilateral tuning in M1 would provide a more consistent picture. When 79 
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comparing patterns of motor cortical activation across movements of the two arms, we can 80 

specifically isolate the effector-invariant aspects of representation. This could help clarify 81 

which neural population is dominant in effector invariant representation in motor cortices. 82 

In the current study, we recorded fMRI responses of healthy human subjects as they 83 

made slice (out-and-back) reaching movements to four peripheral targets using either the right 84 

or left arm. We then used pattern classification techniques to determine whether it was 85 

possible to decode movement direction from the fMRI response patterns in each of several 86 

visual and motor cortical areas when examining ipsilateral or contralateral movements 87 

separately. In agreement with previous studies (Fabbri et al., 2010; Haar et al., 2015), we 88 

were able to decode the direction of movements performed by contralateral or ipsilateral arm 89 

with above chance accuracy. Next, we trained a classifier to distinguish between fMRI 90 

responses of movements to different targets when performed by one arm and tested its 91 

decoding ability using fMRI responses of movements made by the other arm. We performed 92 

this analysis once with movements defined according to their extrinsic target locations (i.e., 93 

real world coordinates) and again with movements defined according to their intrinsic, joint-94 

angle coordinates. This initial approach is the most widely used in the MVPA literature. 95 

However, it does not address the possibility that effector-invariant representation combines 96 

intrinsic and extrinsic components. Therefore, we also applied pattern-component modeling 97 

analysis and a geometrical analysis of the voxel-by-voxel fMRI patterns to further examine 98 

similarities across contralateral and ipsilateral movements when defined in extrinsic or 99 

intrinsic coordinates.  100 
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Methods 101 

Subjects. The data analyzed in the current study was collected during a previous study 102 

(Haar et al., 2017). 32 right-handed volunteers with normal or corrected-to-normal visual 103 

acuity (15 women and 17 men, aged 22-36 (25.6±2.5)) participated in the study. The Soroka 104 

Medical Center Internal Review Board approved the experimental procedures and written 105 

informed consent was obtained from each subject. The sample size was selected so that the t-106 

test effect size of 0.5 would have power greater than 1 − β = 0.85 (one-tailed test), with α set 107 

to 0.05. According to G*Power (Faul et al., 2009), the required minimum sample size is 31. 108 

Experimental Setup and Design. Subjects lay in the scanner bore and viewed a back-109 

projected screen through an angled mirror, which prevented any visual feedback of their arm 110 

and hand. An MRI-compatible digitizing tablet (Hybridmojo LLC, CA, USA) was placed 111 

over the subject’s waist and used to track their arm movements (Figure 1A). Subjects 112 

performed slice (out-and-back) reaching movements from a central target to four peripheral 113 

targets differing in their directions and extents (Figure 1B) and did not receive any visual 114 

feedback of their arm location during movement. The directions were ±45° and the extents 115 

were 7 and 13 centimeters. Each trial started with the presentation of a peripheral target for 116 

one second. Four seconds after the target disappeared, the central target changed from red to 117 

green, indicating that the movement should be performed by moving the stylus pen on the 118 

tablet. Subjects had one second to complete the movement after which the center target turned 119 

red and remained red for the entire inter-trial-interval (ITI), which lasted six seconds. There 120 

was no post-trial visual feedback or knowledge-of-results. All subjects performed three 121 

experimental runs with each arm, each lasted 9 minutes and contained 11 movements to each 122 

of the four targets. The experiment started with three runs of the left (non-dominant) arm, 123 

followed by three runs of the right (dominant) arm. Between the sets the experimenter helped 124 

the subject to move the stylus from his left hand to his right hand without moving his head 125 

and body. Before the scan, the subjects trained on the task to get familiar with the tablet and 126 

the task rule (wait for the go cue), and to get comfortable with moving a stylus pen on a tablet 127 

with their left (non-dominant).    128 
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Movement Recording. Kinematic data were recorded at 200 Hz. Trials with a reaction 129 

time of more than 1 second, trials with a movement angle error >22.5o (at peak velocity or 130 

end point), and trials with movement length that was <50% or >200% of the target distance 131 

were discarded from further analysis. Trials containing correction movements (i.e., velocity 132 

profiles with more than two peaks) were also removed. Additionally, to avoid classification 133 

biases due to uneven number of trials, in each pair of targets (long and short) we removed the 134 

trials with the highest angular errors from the target that had more trials, to force even number 135 

of trials.  On average approximately 8% (std 3%) of the trials were discarded for each subject. 136 

There was no significant difference in the number of discarded trials between the two arms.  137 

MRI acquisition and preprocessing. Imaging was performed using a Philips Ingenia 138 

3T MRI scanner located at the Ben-Gurion University Brain Imaging Research Center. The 139 

scanner was equipped with a 32 channel head coil, which was used for RF transmit and 140 

receive. Blood oxygenation level-dependent (BOLD) contrast was obtained using a T2* 141 

sensitive echo planar imaging (EPI) pulse sequence (TR = 2000 ms; TE = 35 ms; FA = 90o; 142 

28 slices; voxel size of 2.6*2.6*3 mm and with 0.6 mm gap). Anatomical volumes were 143 

acquired with a T1-weighted sagittal sequence (TR = 8.165 ms; TE = 3.74 ms; FA = 8o; voxel 144 

size of 1*1*1 mm).  145 

MRI data were preprocessed with the Freesurfer software package 146 

(http://surfer.nmr.mgh.harvard.edu, Fischl, 2012) and  FsFast (Freesurfer Functional Analysis 147 

Stream). Briefly, this process includes removal of non-brain tissue and segmentation of 148 

subcortical, gray, and white matters based on image intensity. Individual brains were 149 

registered to a spherical atlas which utilized individual cortical folding patterns to match brain 150 

geometry across subjects. Each brain was then parcellated into 148 cortical ROIs using the 151 

Destrieux anatomical atlas (Destrieux et al., 2010). Functional scans were subjected to motion 152 

correction, slice-timing correction and temporal high-pass filtering with a cutoff frequency of 153 

two cycles per scan. Functional scans were registered to the high-resolution anatomical 154 

volume. No additional spatial smoothing was performed. Preprocessed data was imported into 155 

MATLAB (R2015a, MathWorks Inc. USA), and all further analysis was performed using 156 

custom software written in matlab.  157 

http://surfer.nmr.mgh.harvard.edu/
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Identification of regions of interest. Visual and motor regions of interest (ROIs) were 158 

defined a priori according to a combination of anatomical and functional criteria in the native 159 

space of each subject. We identified 7 commonly reported visual, visuomotor, and motor 160 

ROIs (Barany et al., 2014; Gallivan et al., 2011; Haar et al., 2015; Vesia and Crawford, 2012) 161 

by selecting 150 continuous functional voxels with the strongest activation during movements 162 

of the contralateral arm to the four targets. The ROIs were located in the following anatomical 163 

areas: Early visual cortex (Vis) - Occipital pole and calcarine sulcus; Superior parieto-164 

occipital cortex (SPOC) - Superior portion of the parieto-occipital sulcus; Inferior parietal 165 

lobule (IPL) - Dorsal portion of the angular gyrus and the middle segment of the intraparietal 166 

sulcus; Superior parietal lobule (SPL) - Anterior portion of the superior parietal lobule, 167 

superior to the IPS and slightly posterior to the postcentral sulcus; Primary motor cortex (M1) 168 

- anterior bank of the central sulcus in the hand knob area; Dorsal premotor cortex (PMd) - 169 

Junction of superior frontal sulcus and precentral sulcus; Supplementary motor area (SMA) - 170 

Medial wall of the superior frontal gyrus, anterior to the central sulcus, posterior to the 171 

vertical projection of the anterior commissure. The averaged centers across subjects of all 172 

ROIs are listed in Table 1. 173 

We defined 8 additional ROIs outside the brain (one ROI in each corner of the 174 

scanned volume). These ROIs were used in control analyses to assess measurement noise 175 

during the scan of each subject.   176 

Time course analysis. To ensure that our fMRI patterns were not generated by head 177 

motion, respiration, and blood flow artifacts, we removed the following components from the 178 

fMRI time-course of each cortical voxel, through linear regression: (1) six head motion 179 

parameters obtained by rigid body correction of head motion (three translations and three 180 

rotations), (2) fMRI time-course from the lateral ventricles, and (3) the mean fMRI signal of 181 

the entire cortex (i.e., global component). Last, we normalized the time-course of each voxel 182 

to present signal change. 183 

MVPA. We first estimated the response amplitude for movement execution of each 184 

voxel in each trial using a general linear model (GLM) analysis where the GLM contained a 185 

row for every time-point and a column for every trial. Each column contained a delta function 186 
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at time of the go cue (movement onset), which was convolved with a canonical hemodynamic 187 

response function. The response amplitude associated with each trial (i.e., beta value) was 188 

estimated using multiple regression and the statistical significance of the response amplitude 189 

was estimated by computing its t statistic. Voxel-by-voxel t-values of each trial formed a 190 

multidimensional vector with the number of dimensions equal to the number of voxels in the 191 

ROI. t-value rather than beta-value vectors were used in all classification analyses in order to 192 

suppress the contribution of voxels with large trial-by-trial variability (Misaki et al., 2010). 193 

Next, we deducted the mean from the voxel-by-voxel fMRI response pattern of each trial, to 194 

remove possible effect of the changes in overall activation, which could reflect uninteresting 195 

vascular dynamics of large-vessels which do not encode the task (O’Herron et al., 2016). 196 

We performed the classification analyses using a multiclass linear discriminant 197 

analysis (LDA) classifier implemented in MATLAB's statistics toolbox. We trained each of 198 

the classifiers to identify the movement direction of each trial according to the voxel-by-voxel 199 

fMRI patterns in each ROI. We first performed this analysis within arm (i.e. using movements 200 

of the same arm) using a ‘leave one out’ validation scheme. This included training the 201 

classifier using all but one of the accurate trials, and then assessing the accuracy of the 202 

classifier by decoding the movement direction of the remaining trial. We repeated this process 203 

while leaving-out each of the trials and then estimated the overall decoding accuracy by 204 

computing the proportion of accurately decoded trials for each arm in each ROI. We then 205 

performed cross-decoding, between-arms, where we trained the classifier on all trials 206 

performed with one arm and tested it while decoding the movement direction in all trials 207 

performed with the other arm. Decoding accuracy was estimated as the proportion of trials 208 

that were accurately decoded. The number of trials used to train each of the classifiers was 209 

balanced across targets in order to prevent classification bias towards over-represented 210 

targets.  211 

To assess statistical significance of decoding accuracy in both within and between 212 

arms analyses, we performed a randomization test which was identical to the classification 213 

analysis described above except that we randomly shuffled the movement labels before 214 

training the classifier. We ran this analysis 2000 times, on each we randomly choose 32 215 
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subjects (with repetitions) and for each subject separately we reshuffled the movement labels 216 

each time, and then computed the mean across subjects in each iteration. The mean decoding 217 

accuracy across subjects was considered significantly larger than chance if it exceeded the 218 

97.5th percentile of the null/chance distribution for each ROI. Accordingly, all statistical tests 219 

used in all graphs and all analyses are based on the permutation tests and not on theoretical 220 

chance levels. We used the false discovery rate (FDR) correction (Benjamini and Hochberg, 221 

1995; Yekutieli and Benjamini, 1999) to correct for the multiple comparisons across ROIs. 222 

 Searchlight analysis. We used a searchlight analysis (Kriegeskorte et al., 2006) to 223 

map classifier decoding accuracies across the entire brain. Clusters of 27 functional voxels 224 

were defined by creating a volumetric cube with an edge length of 3 around each gray matter 225 

voxel. An LDA classification analysis was performed for each cluster as described above 226 

such that each gray matter voxel was associated with a decoding accuracy value yielding a 227 

decoding accuracy map. The searchlight analysis was performed in the native space of each 228 

subject. Decoding accuracy maps of all subjects were transformed to a standard cortical 229 

surface using Freesurfer and a t-test was used to determine whether each vertex (distributed 230 

points along the cortical surface from which Freesurfer is sampling the fMRI data) exhibited 231 

significant above-chance decoding accuracies across subjects. We used FDR correction to 232 

correct for the multiple comparisons across vertices (Storey, 2002).  233 

Correlations between patterns. Another way to characterize the similarity of fMRI 234 

activity patterns in different behavioral conditions has been through the analysis of the 235 

covariance of the patterns (using pattern component modeling, Diedrichsen et al., 2011). By 236 

analyzing the covariance matrix, the high dimensionality of the problem of comparing 237 

patterns (where dimensionality is in the hundreds) is reduced to the much lower 238 

dimensionality of the size of the covariance matrix (whose dimensionality is generally less 239 

than 20). In addition, this approach allows simultaneous effector-invariant representation in 240 

both extrinsic and intrinsic coordinates in a single ROI. This approach has already been used 241 

to test for effector-independent representations of finger tapping sequence (Wiestler et al., 242 

2014). In brief, the approach treats every aspect of the movement as a “component” that will 243 

contribute to the overall pattern of activity. In our study, we included components for the two 244 
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different arms and also for each of the four different targets during movements of each arm. 245 

Thus, there were a total of 10 components. These components are then used as a random 246 

effect in a linear regression. This means that the regression estimates the covariance matrix of 247 

each pattern expression rather than estimating the pattern itself. The size of the covariance of 248 

different components expresses the similarity in the patterns that are expressed during trials in 249 

which that component appears. This allows us to estimate the degree of extrinsic effector-250 

independent representation with the covariance between components representing movements 251 

to the same target with the different arms. We can, at the same time, measure the degree of 252 

intrinsic effector-independent representation with the covariance between components 253 

representing movements with the different arms to mirror-symmetric targets. The strength of 254 

this approach is that it allows estimating these two different covariances simultaneously 255 

whereas the previous approaches essentially classified each ROI as either extrinsic or 256 

intrinsic.  257 

Distances between patterns. In an attempt to get a low dimensional representation of 258 

the distance between patterns, we projected the multidimensional fMRI pattern on a single 259 

dimension of interest (Figure 6A). The single dimension was the one that connects the mean 260 

patterns of two movements performed with the same arm to different targets. By projecting 261 

the mean patterns of the movements with the other arm to these same targets we were able to 262 

localize them on this single dimension. We scaled this one dimensional representation so that 263 

the distance between the two right arm movements would be one, and averaged this 264 

unidimensional projection across subjects. We compared these results relative to these of a 265 

null data set. For the null data set we generated triplets of random vectors with the same 266 

number of dimensions as the original data (150 voxels) from a multivariate normal 267 

distribution, and projected the third on the single dimension connecting the other two. We 268 

repeated this once for each subject (32 times) and averaged the projections over the subjects 269 

to get an average projection. This whole process was repeated 1000 time to get a distribution 270 

of the average projection for null data. We compered the actual mean projections to the 95% 271 

HDI of the null data mean projections (the red patch on Figure 6B).   272 
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Results 273 

32 right-handed volunteers lay 274 

in the MRI scanner bore and 275 

performed slice (out-and-back) 276 

reaching movements from a central 277 

target to four peripheral targets in two 278 

different directions and to two 279 

different distances (Figure 1).  280 

Decoding movement direction. We assessed the decoding accuracy of movement 281 

directions, during movement execution, in each of seven visuomotor brain regions, in each 282 

hemisphere (Figure 2). These were defined according to anatomical constraints and functional 283 

responses in each subject separately (see Methods). In the first analysis, we evaluated the 284 

decoding accuracy within each arm. LDA classifiers identified movement direction according 285 

to the voxel-by-voxel response patterns of single trials, and we assessed decoding accuracy 286 

using a leave-one-out validation scheme. We used a randomization analysis to determine 287 

statistical significance and then applied an FDR correction to address the multiple 288 

comparisons problem (see Methods). Our analysis classified long and short movements 289 

separately. While the decoding accuracies were a bit higher for the longer movements, the 290 

results were almost identical for the two sets of movement types, suggesting high 291 

reproducibility. We present results averaged across the two different movement lengths. All 292 

results are presented with FDR-corrected significance. 293 

A 

Figure 1. (A) Experimental setup. (B) Representative example 
of movement paths of one subject with his right arm to the 
different targets. Movement paths are color coded according 
to their target.  

B 
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 294 

The mean decoding accuracies were significantly above chance level (50%) in both 295 

hemispheres while making movements with either arm (Figure 3). Early visual area (Vis) 296 

showed the highest decoding accuracies (>64%, p<0.001), while all other ROIs showed 297 

relatively similar values (>54%, p<0.001) with the only exceptions the PMd during ipsilateral 298 

arm movements (> 53%, p<0.005), and right IPL during ipsilateral movement which was the 299 

only region not to show significant decoding (52%, p=0.18). A two-tailed student t-test found 300 

no significant differences in the decoding accuracy between the right and the left arm 301 

(p>0.25), nor between the ipsi- and the contralateral ROIs in any of the regions (p>0.43). 302 

However, we note that visual cortical areas (Vis and SPOC) showed slightly better decoding 303 

for the dominant, left hemisphere while motor cortical areas (SPL, M1, PMd, and SMA) 304 

showed slightly better decoding for the contralateral hemisphere. In any case, our results 305 

showed that directional selectivity was clearly apparent in the voxel-by-voxel fMRI patterns 306 

of multiple visual and motor system areas both for contralateral and ipsilateral movements. 307 

Control regions outside of the brain showed chance classification for both right and left arm 308 

movements. 309 

Figure 2. Regions of interest. Cortical areas that exhibited strong responses during arm right (A) and left (B) arm movements are 
shown in red/orange. Results calculated across all subjects (random-effects GLM) and displayed on inflated hemispheres of a 
template brain. The general locations of the selected ROIs are indicated, but actual ROIs were anatomically and functionally 
defined in each subject. ROIs: Primary motor cortex (M1), dorsal premotor cortex (PMd), supplementary motor area (SMA), 
inferior parietal lobule (IPL), superior parietal lobule (SPL), superior parieto-occipital cortex (SPOC), and the visual cortex (Vis). 

A B 
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 310 

Decoding movement direction across arms. The bilateral robustness of directional 311 

selectivity throughout the visuomotor hierarchy, demonstrated by the within arm decoding, 312 

led us to ask whether some directional selectivity reflected an effector-invariant movement 313 

representation. We tested this using cross-decoding. We tested whether a classifier for fMRI 314 

patterns trained to identify movement direction using trials performed with one arm would be 315 

able to decode movement direction from the trials performed with the other arm. We present 316 

cross-decoding accuracies averaged across both arms and both target distances. Successful 317 

cross-decoding in a particular ROI suggests that some of the fMRI activity in that ROI 318 

represents the movement in the same way during movements of either arm. Figure 4A 319 

illustrates two decoding possibilities: movements could have similar representation when they 320 

are in the same direction in space (extrinsic coordinate representation) or when they involve 321 

movement of the same right/left arm joints and are, therefore, in mirror-symmetric directions 322 

in space (intrinsic/joint coordinate representation).  323 

Response patterns in visual brain areas were accurately decoded in extrinsic 324 

coordinates, while response patterns in some motor brain were accurately decoded in intrinsic 325 

coordinates (Figure 4B). Decoding accuracies in extrinsic coordinates were significantly 326 

above chance levels only in the visual cortex bilaterally (>60%, p<0.001). Decoding 327 

accuracies in intrinsic coordinates were significantly above chance levels in M1 bilaterally 328 

(>53%, p<0.001), SMA bilaterally (>54%, p<0.001), left PMd (53%, p<0.001), right PMd 329 

Figure 3. Within arm decoding. Mean decoding accuracies across subjects for each of the arms separately using a leave-one-out 
validation scheme (left hemisphere ROIs in black, right hemisphere ROIs in gray). Solid red line indicates chance level (50%, two 
movement directions). Error bars indicate SEM across subjects. Asterisks indicate significant above-chance decoding accuracies 
(randomization test, FDR corrected for multiple comparisons). 



14 
 

(52%, p<0.002), left SPL (52%, p<0.005), and right SPL (53%, p<0.001). SPOC and IPL 330 

showed chance classification in both hemispheres (p>0.35). Control regions outside of the 331 

brain also showed chance decoding. 332 

These cross-decoding results showed reproducibility across the two hemispheres, 333 

across the different combinations of training and testing arm, and across the two different sets 334 

of movements to the long and the short targets. All these different cross-decoding results 335 

showed no significant statistical differences (two-sample t-tests across all pairs, p>0.36), 336 

demonstrating the robustness of the results. 337 

 338 

Extrinsic/world                               Intrinsic/Joint  
  coordinates                                     coordinates 

Figure 4. Between arms decoding. (A) Illustration of the possible pairs of movement with both arms that may share similar fMRI 
representations. On the right with a light blue background, movements to different spatial targets using similar joint configuration, 
which suggest representation in intrinsic/joint coordinates. On the left with a light red background, movements to the same 
spatial target using different joint configuration, which suggest representation in extrinsic coordinates. (B) Mean decoding 
accuracies between arms across subjects in the ROIs of the both hemispheres (left hemisphere in black, and right hemisphere in 
gray) and outside the brain. Bars going to the right (with the light blue background) are for decoding in intrinsic/joint coordinates, 
and bars going to the left (with a light red background) are for decoding in extrinsic coordinates. Error bars indicate SEM across 
subjects. Asterisks indicate significant above-chance decoding accuracies (FDR corrected for multiple comparisons). (C) Whole-
brain searchlight analysis between arms. For each cluster of vertices the classifier was trained on trials performed with one arm 
and tested on trials performed with the other arm. Cortical vertices with between arms decoding accuracies that were significantly 
above chance across subjects in intrinsic/joint coordinates (blue, p <0.05, FDR corrected) or in extrinsic coordinates (red, p < 0.01, 
FDR corrected) are marked on inflated hemispheres of a template brain. 

A 

B 

C 
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Searchlight decoding. We used a whole brain searchlight analysis (Kriegeskorte et 339 

al., 2006) to assess effector-invariant directional selectivity across the entire cortical surface 340 

without restricting the analysis to a priori ROIs. We defined volumetric searchlight cubes 341 

across the cortical gray matter, and for each cube we performed between-arm cross-decoding 342 

(training the classifier on one arm and then decoding trials from the other arm) as described 343 

above in the ROI analysis. A t-test across subjects, followed by FDR correction, assessed 344 

decoding accuracy significance in each voxel (see Methods). 345 

The searchlight map in both hemispheres was remarkably similar and show 346 

complementary results to these described in the ROI analysis (Figure 4C). Significant 347 

effector-invariant decoding in intrinsic coordinates was evident in M1, PMd, SMA and SPL, 348 

in both hemispheres, while significant decoding in extrinsic coordinates was evident only in 349 

the visual cortex. These results validate the ROI results using far smaller clusters of voxels for 350 

the classification and decoding procedures. Although there was significant decoding in 351 

intrinsic coordinates in the superior postcentral sulcus (which overlapped with the ROI 352 

defined for SPL), no other effector-invariant decoding was apparent in the PPC. This can 353 

suggest either that there is no effector-invariant representation of movement in the parietal 354 

cortex or that there are effector-invariant representations in both intrinsic and extrinsic 355 

coordinate frames that combine in a manner that prevents decoding. 356 

Correlations between patterns. To address the possibility of effector-invariant 357 

representations in both intrinsic and extrinsic coordinate in the same region, we extend the 358 

analysis following the logic of Wiestler et al. (2014). Their approach hypothesizes that the 359 

patterns associated with movement can be decomposed into arm-related components and 360 

movement-specific components. Rather than identifying these components, they estimate 361 

their covariance matrix using pattern-component modelling (Diedrichsen et al., 2011). 362 

Following this approach (see Methods), we can estimate the correlation between the 363 

movement-specific components; i.e., what proportion of the informative, movement-specific 364 

pattern was shared between the two arms in extrinsic and/or in intrinsic coordinates. 365 

In the cross-correlation analysis each trial is classified to one target or the other, and 366 

as a result the bars (in Figure 4B) can only go to one direction or the other 367 
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(extrinsic/intrinsic). On the other hand, the pattern component analysis allows each region to 368 

have significant correlations in both extrinsic and intrinsic coordinates. In this approach we 369 

calculate the correlation between the component of moving one arm to one target, to the two 370 

components of moving the other arm to the two different targets, and get two independent 371 

correlation coefficients. Thus, in Figure 5A the red (extrinsic) and blue (intrinsic) bars can go 372 

up simultaneously. Similarly, in the surficial correlation map (Figure 5B) the same region can 373 

be both extrinsic and intrinsic (red and blue combine as purple). Nevertheless, the results 374 

showed that this does not happen. The visual cortex showed strong and significant 375 

correlations in extrinsic coordinates (r>0.4, p<0.001) and M1, PMd, SMA and SPL, showed 376 

strong and significant correlations in intrinsic/joint coordinates (r>0.18, p<0.001; Figure 5A). 377 

This analysis did reveal that IPL also had significant representation in intrinsic coordinates 378 

(r>0.14, p<0.005). However, it was not significantly greater than the extrinsic representation, 379 

as revealed in pattern component correlations. This may explain why the classification 380 

approach above failed to uncover this representation. 381 

These results were reproduced in a searchlight analysis, where we ran the same 382 

analysis on a volumetric cube shifted across the cortical gray matter. On the surface (Figure 383 

5B) one can see clearly how the extrinsic correlations are limited to the occipital cortex, and 384 

see the spread of the intrinsic correlations across the frontal and posterior parietal cortex. 385 
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386 
  387 

Distances between patterns. Lastly, we developed a geometrical analysis to represent 388 

the relation between the movement patterns spatially. The aim of this additional analysis is to 389 

get a low dimensional representation of the distance between fMRI patterns of the different 390 

movements to facilitate spatial visualization. The figure shows the actual distances between 391 

the patterns of the different movements. This complements the MVPA methods by presenting 392 

the raw data after a simple projection onto the dimension of interest. We calculated the mean 393 

fMRI pattern across all trials performed with the same arm to each target and interpreted this 394 

pattern as a point in a multidimensional space where each dimension represents activity of a 395 

single voxel. In this space, we used, as a reference, the vector connecting movements to two 396 

different targets with the right arm (Figure 6A). We asked where along this vector the two 397 

movements of the left are located. Thus, we projected the patterns associated with the left arm 398 

onto the vector defined by movements of the right arm. This allowed us to ask to which right 399 

arm movement pattern each left arm movement pattern was closest. To allow comparison 400 

across subjects, we normalized the distances between patterns by the size of the reference 401 

vector.  402 

Figure 5. Correlation analysis between arm. (A) Corrected correlation coefficients were computed using pattern component 
modeling for each ROI in extrinsic (red) and intrinsic/joint (blue) coordinates for the left (dark red/blue) and right (light 
red/blue) hemisphere. Colored asterisks indicate correlations that are significantly larger than zero; black asterisks indicate 
significant difference between the intrinsic and extrinsic correlations; **p<0.001,*p<0.01 ; LH = left hemisphere; RH = right 
hemisphere; (B) Map of correlation of the pattern components in extrinsic coordinates (red) and intrinsic/joint coordinates 
(blue), thresholded at r>0.15.  

A B 
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 403 

 Figure 6B presents the normalized distances between patterns in each of the ROIs, in 404 

comparison to the 95% HDI of randomly generated patterns. In visual cortices, patterns of 405 

movements of the two arms to the same target were closer than patterns of movements to 406 

opposite targets (t-test on the distances between the projections, p<10e-10). In motor cortices, 407 

the opposite was the case. fMRI patterns of movements with the right or left arm to mirror-408 

symmetric targets were closer to each other (p<10e-5).  In the intermediate visuomotor 409 

regions in parietal cortex, the fMRI patterns of the projections of the two left arm movements 410 

were relatively similar to each other and were within the range of the distribution of the 411 

randomly generated patterns.  412 

Control for kinematic differences. All the results above are based on the assumption 413 

that movements to different directions have similar kinematics. Otherwise, the decoding we 414 

Figure 6. Spatial relation between fMRI patterns. (A) 3D 
simulation of the multidimensional projections: each 
square/triangle represents the 3 voxel fMRI pattern of a 
single trial (which is a simplification of the 150 voxels 
patterns in the data). The squares are trials to the right target 
and the triangles are trials to the left target, both are color 
coded for the moving arm (green = right arm, purple= left 
arm). The large dots represent the mean fMRI pattern across 
all trials performed with the same arm to each target. The 
green line is the dimension of interest in this space: the 
dimension which connects the two mean patterns of right 
arm movements. On this line we project the mean patterns 
of the left arm movements. The small purple dots are the 
projections of the left arm movements’ patterns on the 
dimension of interest. In this example, the projections 
suggest an intrinsic/joint representation as the projection of 
the mean pattern of left arm movements to the right target 
(purple squares) is close to the mean pattern of right arm 
movements to the left target (green triangles).  (B) Distances 
between fMRI patterns: the mean fMRI response patterns of 
left arm movements to each target in each ROI was projected 
onto the difference vector between the two mean patterns 
of right arm movements. The distance matrix of each subject 
was normalized so that the distance between the right arm 
patterns is fixed to one. Each dot represents the mean across 
subjects of the unidimensional projection (color code and 
marker types are the same as in A), and the lines represent 
SEM. For each ROI the top row is the left hemisphere ROI and 
the bottom one is the right hemisphere. The light red patch is 
95% HDI of null data.  

A 

B 
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do may be influenced by these kinematics and not only by the direction. Indeed, movements 415 

to the ipsilateral target are somewhat longer and faster than movements to the contralateral 416 

target (Figure 7). To ensure that those kinematic differences did not impact our results we 417 

tested for a possible correlation between the kinematic differences and the decoding 418 

accuracies across subjects. There was no such correlation in any of the ROIs (r<0.15 , p > 0.1 419 

uncorrected). In an additional control analysis, we reran the cross-decoding analysis only on 420 

the subjects that do not show consistency across arms (movements to the ipsilateral target are 421 

longer and faster only in one arm but not it the other, or in none of the arms). In this case, if 422 

the decoding on the training data is based on the kinematics and not the direction it should 423 

produce no cross-decoding to the other arm where there is no kinematic difference between 424 

the movement directions. These cross-decoding results were similar to the ones reported in 425 

Figure 4 (i.e., all motor cortices significantly decode movement direction across arms in 426 

intrinsic/joint coordinates), suggesting that we do classify the difference in the direction and 427 

not in the extent or the velocity. 428 

 429 

 430 

Figure 7. Kinematic differences. Left (A) and right (B) arm movement extents are presented for the movements to the 
ipsilateral targets (x axis) versus the contralateral targets (y axis), for the short (light gray) and long (dark gray) movements. 
Each dot is the median extent of movements to the target by a subject; the plus is the 50% confidence interval across trials. (C) 
The difference in movement extents between the ipsilateral and the contralateral targets for the right arm (x axis) versus the 
left arm (y axis). The color code is the as in A & B. 

A B C 
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Discussion 431 

It is well established that motor brain areas are active during ipsilateral arm 432 

movements and even exhibit reliable directional selectivity (Cisek et al., 2003; Donchin et al., 433 

1998; Fabbri et al., 2010; Haar et al., 2015). Here we tested whether the expression of this 434 

directional selectivity in patterns of fMRI activation is similar across ipsilateral and 435 

contralateral arm movements and revealed effector-invariant representation in cortex. We 436 

further asked whether effector-invariant representation is primarily expressed in an intrinsic 437 

or extrinsic coordinate frame. Our results reveal that ipsilateral and contralateral movements 438 

involving symmetric joint configurations are encoded in a similar manner by neural 439 

populations in the motor cortices (M1, PMd, SMA and SPL). This is evidence for effector 440 

invariant encoding of movements in intrinsic/joint coordinates. Effector invariant 441 

representation of movement in M1 suggests that the two MIs receive a common drive.  This 442 

common drive may explain the pathology of mirror movements in joint coordinates (Ruddy 443 

and Carson, 2013; Tsuboi et al., 2010). 444 

Clinical studies suggest an important role for ipsilateral activity in the recovery of 445 

motor function (Bradnam et al., 2013). After unilateral damage to a sensorimotor area, the 446 

brain activity on the side ipsilateral to the paralyzed limb increases to compensate (Johansen-447 

Berg et al., 2002). In fact, recent work utilizes ipsilateral motor activity to develop brain 448 

machine interfaces (BMI) for patients with unilateral damage (Bundy et al., 2012; Hotson et 449 

al., 2014). Our results suggest specific constraints on the decoding mechanisms used in 450 

ipsilateral BMIs which may facilitate the use of BMIs in controlling ipsilateral movements 451 

following contralateral damage.  452 

Single cell recordings during arm reaching movements in monkeys also show 453 

directional tuning across the motor cortices for both contra- and ipsilateral movements (Cisek 454 

et al., 2003; Donchin et al., 1998). At the level of individual neurons, comparing 455 

representation for movements of the two arms is complicated by the fact that the tuning of 456 

many neurons changes over the course of the trial (from planning to execution; Cisek et al., 457 

2003).  In addition, a key finding is that the difference in the directional tuning of a neuron to 458 
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the two arms is not consistent across M1 neurons (Cisek et al., 2003; Steinberg et al., 2002). 459 

These findings can be explained by the fact that different neurons in M1 encode direction in 460 

different coordinate systems (Wu and Hatsopoulos, 2006). While the picture at the single 461 

neuron level may be complicated, a recent study asked a similar question at the ensemble 462 

level of M1 neurons (Ganguly et al., 2009). That study – which compared activity of the two 463 

cortices during right arm movements – found that both contra- and ipsilateral ensemble 464 

activities were more strongly correlated with angular joint kinematics than end-point hand 465 

coordinates. While this work was done only on right arm movements, and therefore did not 466 

compare the activity and selectivity of the same ensemble of neurons while moving the two 467 

arms, these results are consistent with our finding that effector-invariant representation in M1 468 

is in intrinsic/joint coordinates.  469 

Importantly, motor cortex represents distal hand movements in anatomical areas 470 

distinct from those used for proximal arm movements. Similar representational divisions have 471 

been demonstrated in monkeys (Kwan et al., 1978; Park et al., 2001) and humans (Meier et 472 

al., 2008). The coordinate systems of representation are also different. M1 representation of 473 

distal movements is dominated by extrinsic representation (Kakei et al., 1999) while the 474 

proximal representation is more mixed (Wu and Hatsopoulos, 2006).  475 

In the PMd, neural recordings suggest that the preferred directions of neurons that are 476 

tuned with both arms are similar between arms (in extrinsic coordinates), but this was mostly 477 

true before trial onset. During movement, most PMd cells that stay tuned with both arms 478 

show varying directional differences of tuning between the arms (Cisek et al., 2003). Like in 479 

M1, this diversity may be the expression of neurons encoding in different coordinate systems 480 

(Wu and Hatsopoulos, 2007). Our experiment was not designed to isolate preparatory from 481 

movement related activity. As a result, we did not explore PMd activity specifically in the 482 

pre-movement period. 483 

In the parietal cortex we did not find effector-invariant representation of movement in 484 

any of the analyses we ran (except from the primary somatosensory area which overlapped 485 

with the ROI defined for SPL). This can be explained by the role of the parietal cortex in 486 

sensorimotor mapping (Bernier and Grafton, 2010; Buneo and Andersen, 2006; Haar et al., 487 
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2015; Tanaka et al., 2009), since the transformation between the extrinsic visual coordinates 488 

to the intrinsic motor coordinates is effector specific. Therefore, while single neurons in the 489 

parietal cortex may decode movement in an effector-invariant manner in one coordinate 490 

system or the other, the area as a whole seems to decode movement in an effector specific 491 

manner. 492 

While the current study focused on proximal arm movements (shoulder and elbow), 493 

similar results were shown in distal finger movements. Recent fMRI studies have suggested 494 

that finger movements with right and left hands exhibit hand-invariant representations in M1, 495 

PMd, SMA and SPL when examined in intrinsic coordinates (Diedrichsen et al., 2013). 496 

Interestingly, finger sequence movements also suggested intrinsic representations in M1, 497 

whereas patterns associated with sequence-specific movements in the PMd suggested both 498 

intrinsic and extrinsic representation (Wiestler et al., 2014). Such a combination of coordinate 499 

frames in the PMd is not apparent in our results (Figure 5). This difference in representation 500 

in PMd may suggest real differences in the ipsilateral neural representation of finger and arm 501 

movements. This goes in line with previous findings demonstrating that ipsilateral distal 502 

movements activate only secondary motor areas and deactivate M1, while ipsilateral proximal 503 

movements do activate M1 bilaterally (Nirkko et al., 2001).  504 

When comparing our study with those on distal representation, it is striking that 505 

decoding levels in our study are lower than those in the earlier ones. This is not surprising. 506 

fMRI can be used to produced detailed digit maps, with physically adjacent digits represented 507 

next to each other (Ejaz et al., 2015; Siero et al., 2014) even following amputation of the limb 508 

(Kikkert et al., 2016). Directional selectivity of the arm on the other hand, shows no clear 509 

spatial topography in fMRI and therefore relatively low decoding levels (Gallivan et al., 2011; 510 

Gertz et al., 2017; Haar et al., 2015).  511 

A recent study (Gallivan et al., 2013) classified reaching movements and grasping 512 

movements in the two hands. The study compared reach and grasp movements with similar 513 

arm trajectories but different action-goals (reach vs grasp). They found, as we did, bilateral 514 

decoding in many motor areas. However, their pattern of effector-invariant representation was 515 

different from ours.  They found effector-invariant representation in PPC and PMd but not in 516 
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the primary sensory and motor cortices; we found effector-invariant representation in all 517 

frontal motor cortices, but not in PPC. These differences apparently result from differences 518 

between the two tasks. Their analysis shows that reach representation in the two hands are 519 

more similar than reach representation and grasp representation. Our results do not contradict 520 

this. Rather, we compare representation of reach in different directions and compare the 521 

similarity of representation between directions. At this level of analysis, the representation 522 

task, which includes grasp representation, is much more distal than our task. As discussed 523 

above, the distal and proximal movement systems are quite different, and it is not necessarily 524 

surprising that the results are not the same. Taken together with our results, we hypothesize 525 

that motor cortices contain an effector-invariant representation of the movement trajectory (in 526 

intrinsic coordinates) while the parietal cortex contains an effector-invariant representation of 527 

action-goals. The PMd may contain effector-invariant representations of both trajectory and 528 

goal in extrinsic coordinates as well.  529 

Conclusions 530 

The current findings deepen our understanding of effector-invariant encoding of arm 531 

movement trajectory across the human cortex. They highlight the existence of such encoding 532 

across the motor cortices in intrinsic/joint coordinates. Taken together with previous studies 533 

that made similar maps for action-goals (Gallivan et al., 2013) and for finger movements 534 

(Diedrichsen et al., 2013; Wiestler et al., 2014), our results offer a coherent picture of 535 

effector-invariant representations across cortex. While this is of central importance to our 536 

understanding of motor control, it may also be useful in the development of brain machine 537 

interfaces based on ipsilateral activity.  538 
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Tables 641 

 642 

Table 1. Mean ROI MNI Coordinates 643 

 Talairach Coordinates 

ROI Name X Y Z 

L Vis -17 -94 -1 

R Vis 17 -88 3 

L SPOC -14 -59 22 

R SPOC 17 -57 22 

L IPL -29 -46 49 

R IPL 35 -47 45 

L SPL -28 -36 55 

R SPL 32 -34 52 

L M1 -27 -23 58 

R M1 29 -20 55 

L PMd -25 -11 54 

R PMd 26 -6 50 

L SMA -5 -15 57 

R SMA 8 -13 63 
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