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the Relationship between trial-by-
trial Variability and oscillations of 
cortical population Activity
edan Daniel  1,2,3,7*, Thomas Meindertsma4,5,6,7, Ayelet Arazi1,2,3, Tobias H. Donner  4,5,6 & 
ilan Dinstein  2,1,3

Neural activity fluctuates over time, creating considerable variability across trials. This trial-by-trial 
neural variability is dramatically reduced (“quenched”) after the presentation of sensory stimuli. 
Likewise, the power of neural oscillations, primarily in the alpha-beta band, is also reduced after 
stimulus onset. Despite their similarity, these phenomena have so far been studied and discussed 
independently. We hypothesized that the two phenomena are tightly coupled in electrophysiological 
recordings of large cortical neural populations. To test this, we examined magnetoencephalography 
(MEG) recordings of healthy subjects viewing repeated presentations of a visual stimulus. The timing, 
amplitude, and spatial topography of variability-quenching and power-suppression were remarkably 
similar. Neural variability quenching was eliminated by excluding the alpha-beta band from the 
recordings, but not by excluding other frequency-bands. Moreover, individual magnitudes of alpha-
beta band-power explained 86% of between-subject differences in variability quenching. An alternative 
mechanism that may generate variability quenching is increased phase alignment across trials. 
However, changes in inter-trial-phase-coherence (ITPC) exhibited distinct timing and no correlations 
with the magnitude of variability quenching in individual participants. These results reveal that neural 
variability quenching is tightly coupled with stimulus-induced changes in the power of alpha-beta band 
oscillations, associating two phenomena that have so far been studied in isolation.

Neural activity is highly variable, such that repeated presentations of an identical stimulus result in variable neu-
ral responses across trials1–6. This trial-by-trial variability is relatively large before stimulus presentation, and 
strongly reduced (quenched) approximately 200 ms after stimulus presentation7. Neural variability quenching 
is a robust phenomenon that has been reported in intracellular membrane potential recordings in cats, extracel-
lular recordings of spiking activity in monkeys7,8, and in human electroencephalography (EEG)9–12, electrocor-
ticography (ECOG)13, magnetoencephalography (MEG)11, and functional magnetic resonance imaging (fMRI) 
recordings14,15. Furthermore, the phenomenon was reported during both awake and anaesthetized states, and in 
several cortical areas7,15 using a variety of sensory stimuli7,10. Neural variability quenching seems to be a network 
phenomenon that is apparent across large populations of neighboring neurons regardless of their firing rates or 
stimulus selectivity7,16.

Another robust phenomenon that is apparent in recordings of electrophysiological mass activity is the reduc-
tion of induced oscillatory power approximately 200 ms after stimulus presentation. This power suppression 
predominates in the alpha (8–13 Hz) and beta (14–25 Hz) bands, and is often referred to as event related desyn-
chronization (ERD)17,18. It is evident in a spatially selective manner corresponding to the sensory-activated cor-
tical areas19, and coincides with increases in gamma power (>30 Hz) and population spiking activity20. It is, 
therefore, commonly assumed that reductions in alpha power indicate an increase in cortical activity21.

In the current study we examined neural variability quenching in the context of mass electrophysiolog-
ical recordings using MEG. In such recordings, trial-by-trial variability may be driven by two independent 
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mechanisms (Fig. 1). First, a stimulus-induced decrease in oscillatory power/amplitude would yield fewer 
trail-by-trial differences regardless of the precise timing of these oscillations (Fig. 1A). Second, a stimulus-evoked 
increase in phase coherence across trials (i.e., better phase locking across trials) would also yield fewer 
trial-by-trial differences (Fig. 1B). The two mechanisms are not mutually exclusive and may both contribute to 
the variability quenching phenomenon as recorded in EEG or MEG studies22. Note that the two mechanisms 
may also counteract each other such that, for example, variability may increase despite a partial increase in phase 
coherence, if it is accompanied by a simultaneous large increase in oscillatory power.

In the current study we quantified the relationships between spectral power and trial-by-trial neural variabil-
ity in several ways. First, we extracted specific frequency bands from the MEG data and determined the effect that 
this had on neural variability magnitudes. Second, we examined whether individual subject differences in spectral 
power could explain individual differences in neural variability. Finally, we examined whether individual subject 
differences in inter-trial phase coherence (ITPC) could explain individual differences in neural variability. These 
analyses were performed using MEG recordings from an experiment with a coherently moving stimulus (hence-
forth called ‘moving pattern’) presented for a relatively long duration (750 ms), which is known to induce reliable 
sustained gamma band responses in MEG recordings23. Such gamma band responses are difficult to detect with 
other techniques or stimuli24,25.

Materials and Methods
The current study utilized a subset of MEG recordings that were part of a previously published study regarding 
perceptual decision making23.

Subjects. 23 subjects (13 females; age range, 20–54; mean age, 26.6 years; SD, 7.5 years) were included in the 
current study. All subjects had normal or corrected-to-normal vision and no known history of neurological dis-
orders. The experiment was conducted in accordance with the Declaration of Helsinki and approved by the local 
ethics committee of the Hamburg Medical Association. Each subject gave written informed consent.

Experimental design. Subjects passively viewed a repeating visual stimulus while MEG data was recorded 
(Fig. 2A). The stimulus consisted of a large and salient, full-field grid of white crosses (17° × 17°) that rotated in 
the clock-wise or counter-clockwise direction (speed: 160°/s). This moving pattern surrounded a small Gabor 
patch (diameter, 2°; two cycles), located in the lower right or left visual field quadrant (counterbalanced between 
subjects) that was modulated at a temporal frequency of 10 Hz. Subjects fixated on a fixation mark (0.8° width 
and length) in the middle of the screen to suppress potential eye movements. Stimuli were presented using the 
Presentation Software (NeuroBehavioral Systems Inc.). Stimuli were back-projected on a transparent screen using 
a Sanyo PLC-XP51 projector with a resolution of 1024 × 768 pixels at 60 Hz. Subjects were seated 58 cm from the 
screen in a whole-head magnetoencephalography (MEG) scanner setup in a dimly lit room. Each trial started 
with the presentation of the fixation mark for 250 ms, followed by fixation mark and full stimulus for 750 ms, fix-
ation mark only for 750 ms, and an inter-trial-interval of 750 ms containing a blank screen. This experiment was 
used as a localizer for quantifying sensory responses to the moving pattern and Gabor patch in a previous study23. 

Figure 1. Schematic illustration of two different mechanisms for reducing trial-by-trial variability. Hypothetical 
oscillatory activity in three independent trials is presented with respect to stimulus presentation (top panels). 
Dashed lines mark times of stimulus onset and offset, respectively. Reducing the amplitude of oscillations 
(A, top panel) or aligning their phase (B, top panel) will create a reduction in trial-by-trial neural variability 
(bottom panels). Note that the two options are not mutually exclusive and affect variability in an indepedent 
manner.
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This previous study examined perceptual decision making during motion induced blindness26, a phenomenon 
where the moving pattern induces the illusory disappearances of small but salient static stimuli (i.e., the Gabor 
patch). The flicker of the Gabor patch in this localizer, however, was specifically implemented to prevent the 
occurrence of motion induced blindness23. The large sensory cortical response induced by this compound stimu-
lus was mostly due to the larger moving pattern rather than the small Gabor patch27.

Data acquisition. MEG data were acquired using a 275-channel MEG system (VSM/CTF Systems) with a 
sample rate of 1200 Hz, while subjects were in a seated position. The location of each subjects’ head was measured 
throughout the experiment using three fiducial markers placed on both ears and the nasal bridge to control for 
excessive movement. Furthermore, electrooculography and electrocardiography were recorded to aid post-hoc 
artifact rejection.

Preprocessing. MEG data were analyzed in MATLAB (MathWorks Inc., USA) using the Fieldtrip toolbox28, 
EEG toolbox29, and custom-written software. Each trial was defined as an epoch that started 800 ms before stim-
ulus onset and lasted until 1000 ms after stimulus offset (i.e., −800 to 1750 ms with respect to stimulus onset). 
Artifacts related to environmental noise, eye and muscle activity, and squid jumps were detected using stand-
ard automated artifact rejection methods included in the Fieldtrip toolbox. Trials containing artifacts were 
excluded and remaining data was down sampled to 500 Hz. The final analysis was conducted, on average, with 
156 trials (SD = 54.6) per subject. We focused our analysis on the cortical regions processing the physical stim-
ulus (i.e., visual cortex). We, therefore, selected 25 occipital and parietal sensors that exhibited the strongest 
stimulus-induced response, as defined and previously reported by Meindertsma et al. (2017) (Fig. 2B). One sen-
sor was missing in many subjects, and therefore removed from the data of all subjects, resulting in 24 sensors of 
interest. We also present topographical displays of our findings, which demonstrate the spatial selectivity of the 
results.

Spectral analyses. Spectral decomposition of MEG recordings was performed using a sliding Hamming 
windowed Fourier transform (step size: 20 samples, window length: 250 samples, centered in the middle), as 
implemented in EEGLAB29, and performed separately for each trial, sensor, and subject. This window size ena-
bled us to estimate power in the delta-band (2–4 Hz), while retaining a reasonable temporal resolution for assess-
ing stimulus-induced changes in power. The same window properties were used across all frequency bands to 
allow comparison of their temporal dynamics.

Power was calculated for each time-frequency segment by computing the absolute values of the Fourier coef-
ficients. The resulting time–frequency power estimates (i.e., spectrograms) were averaged across the 24 sensors 
described above and then across trials to obtain a spectrogram for each subject. These were then averaged to 
create a spectrogram for the entire group. We also isolated power changes in specific frequency bands, which 
included the delta (2–4 Hz), alpha-beta (5–25 Hz), and gamma (60–120 Hz) bands, using band-pass filters. This 
was implemented by applying one low-pass and one high-pass Hamming-windowed FIR filter for each of the 
frequency ranges, with cutoff frequencies equal to the upper and lower limits of each frequency range, respec-
tively. Topographic plots of changes in power were obtained by computing the mean power of each frequency 
band 200–700 ms after stimulus onset, relative to baseline (−250 ms to stimulus onset), in units of percent signal 
change (see below). These power changes were then averaged across subjects to create a single topographic plot.

To estimate the effect of extracting each of the frequency bands on trial-by-trial variability we used band-stop 
finite impulse response (FIR) filters with a Hamming-window. The cutoff frequencies of each filter were equal to 
the lower and upper limits of each frequency range described above.

Figure 2. Experimental design. (A) Illustration of the stimulus presented to the subjects. A moving pattern 
of white crosses was presented along with a peripheral Gabor patch located in either the left of right bottom 
quadrants of the visual field. Each trial began with a fixation mark for 250 ms, followed by a fixation mark and 
the stimulus for 750 ms, the fixation mark only for 750 ms, and finally an inter-trial interval with a blank screen 
for 750 ms. (B) Scalp map indicating the location of chosen sensors that were used in subsequent analyses.
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Relative stimulus-induced change in power was normalized into units of percent signal change. We calculated 
the power in the pre-stimulus Power( )pre  period (−250 ms to stimulus onset) and post-stimulus Power( )post  period 
(200–700 ms after stimulus onset) and computed percent signal change as follows:

=





−






⋅Relative change in power

Power
Power

1 100post

pre

Finally, we also estimated inter-trial phase coherence (ITPC) across trials, for each frequency and sensor29. 
This measure reflects the degree to which the phase of each frequency is aligned across trials. The ITPC measure 
was calculated as follows:

ITPC f t
n

F f t
F f t

( , ) 1 ( , )
( , )k

n
k

k1
∑=
=

Raw ITPC was calculated for each frequency (f) in a sliding time window (t) that was equivalent to that 
described above for the frequency analysis. F stands for the Fourier transform, k is the trial number, and | | is the 
complex norm. The raw ITPC values in each time window can range from 0 (indicating complete lack of phase 
alignment across trials) to 1 (indicating perfect phase alignment). ITPC values were then normalized to percent 
change units with respect to the pre-stimulus period as described above for the power calculations.

Analyses of trial-by-trial variability. Trial-by-trial variability was computed across trials for each time 
point in every sensor. Absolute trial-by-trial variability in the pre-stimulus (Varpre) and post-stimulus (Varpost) 
periods were computed by averaging across the relevant time-points (−250 ms to stimulus onset, and 200–700 ms 
after stimulus onset, respectively). Relative change in trial-by-trial variability (i.e., neural variability quenching) 
was then estimated by dividing the variability in the post-stimulus period by the pre-stimulus period and adjust-
ing to percentage change units, as follows:

Neural Variability Quenching
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To isolate the contribution of each frequency band to the magnitude of variability quenching, we used 
Hamming windowed FIR band-stop filters to exclude data in each of the frequency bands as described above.

Head motion control analysis. To control for potential head motion artifacts, we computed the 
three-dimensional position of the head in every time-point. We then quantified head-motion by computing the 
mean absolute difference in position from each time-point to the next. Estimated magnitudes of head-motion 
were then correlated with individual measures of neural variability quenching to determine potential relation-
ships or lack there-of.

Statistical analysis. To identify statistically significant changes in oscillatory power or trial-by-trial var-
iability, while correcting for multiple comparisons, we used two-tailed cluster-based permutation tests30. This 
involved identifying time-points with an un-corrected p-value smaller than 0.05 when applying a paired sample 
t-test. Consecutive time-points that exceeded the threshold formed candidate clusters and the sum of each clus-
ter’s t-values was computed. We then used a Monte-Carlo permutation with 1000 iterations to define a probability 
distribution of t-value sums from clusters in randomly drawn sets of time-points30. The corrected p-value was 
defined by the relative percentile of the actual cluster statistic relative to this null distribution of random cluster 
statistics.

We computed Pearson’s correlation coefficients to assess potential relationships between neural variabil-
ity quenching and oscillatory power or ITPC, across subjects. The same analysis was performed in the control 
analysis with estimates of head motion. We also used a partial-correlation analysis to estimate the relative con-
tribution of oscillatory power in each frequency band to the magnitude of neural variability. This eliminated 
inter-dependencies across frequency bands, thereby isolating the contribution of each frequency band from that 
of the others. We performed a regression analysis to explain between-subject-differences in the magnitude of var-
iability quenching, using the subjects’ change in power as measured in each frequency band separately. We then 
computed penalized-likelihood criteria for comparison between the regression models using both the Akaike 
Information Criterion (AIC) and Bayesian Information Criterion (BIC) as implemented in the MATLAB fitlm 
function. Spatial correlations between changes in power and variability quenching were calculated for each sub-
ject, and then averaged across subjects.

Results
Subjects exhibited clear stimulus-evoked ERF responses (Fig. 3A) with commonly reported negative and posi-
tive peaks that were locked to stimulus onset and offset. In addition, subjects exhibited strong stimulus-induced 
responses (Fig. 3B) with a characteristic time-frequency and spatial signature31. An initial broadband power 
increase in all frequencies was followed by different frequency-band specific dynamics. Power in the delta 
(2–4 Hz) band increased dramatically with stimulus presentation, peaking approximately 200 ms after stimulus 
onset. Power in the alpha-beta frequency band (5–25 Hz) increased transiently and then decreased to negative 
values ~200 ms after stimulus presentation (Fig. 3C). Power in the gamma (60–120 Hz) band increased after 
stimulus presentation in a sustained manner and returned to pre-stimulus levels ~250 ms after stimulus offset.

https://doi.org/10.1038/s41598-019-53270-7
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Note the similar temporal dynamics of power across the alpha-beta (5–25 Hz) frequency range (Fig. 3B). This 
motivated us to simplify all further analyses by aggregating this frequency range together, as performed in other 
recent studies32,33. Importantly, analyzing the alpha and beta bands separately did not change any of the reported 
conclusions. Power changes in the three selected frequency bands, 200–700 ms after stimulus presentation, exhib-
ited different spatial characteristics (Fig. 3D). Power reduction in the alpha-beta band and power enhancement 
in the gamma band were specific to sensors located over occipital and parietal cortices, while changes in the delta 
band were more diffused and distributed.

Neural variability quenching. Subjects exhibited robust reductions in trial-by-trial neural variability 
200–700 ms after stimulus presentation in comparison to the pre-stimulus period (Fig. 4A). To determine the 
relationship between variability quenching and the activity of specific frequency bands, we re-computed neural 
variability after isolating each frequency-band using band-pass filters (Fig. 4B). This revealed that variability 
quenching was remarkably strong 200–700 ms after stimulus presentation in isolated alpha-beta band activity, 
where variability quenching reached a mean value of −54.42% (blue line, Fig. 4B). In contrast, neural variability 
was enhanced, rather than quenched in isolated gamma band activity (+6.95%, orange line, Fig. 4B). In isolated 
delta band activity, there was an initial transient increase in variability, followed by a reduction in variability from 
approximately 150 ms after stimulus onset, reaching a mean value of −20.32% (green line, Fig. 4B). This was 
similar to the magnitude of variability quenching in the original, un-filtered data (−20.29%, yellow line, Fig. 4B).

In a complementary analysis we used band-stop filters to eliminate specific frequency bands in the MEG data 
(see Materials and Methods) and then re-computed trial-to-trial variability (Fig. 4C). Eliminating the alpha-beta 
frequency band dramatically altered variability quenching from a mean value of −20.29% in the original signal 
(yellow line, Fig. 4C) to variability enhancement with a mean value of +31.67% (blue line, Fig. 4C). In contrast, 
eliminating the Delta or Gamma bands had minor effects on variability quenching, which had values of −19.26% 
and −20.83% (green and orange lines, Fig. 4C) respectively. Taken together, these results demonstrate that vari-
ability quenching is strongly dependent on neural activity changes that are specific to the alpha-beta band. Note 
that this analysis estimated the mean response across subjects and disregarded individual differences.

The spatial topography of changes in neural variability was selective to occipital and parietal sensors in iso-
lated delta, alpha-beta, and gamma band activity. The band-specific spatial changes in neural variability (Fig. 4D) 
were very similar to the spatial changes in power (Fig. 3D). This was apparent in a moderate spatial correlation in 
the delta (r(268) = 0.57, p = 0.02) band and very strong correlations in the alpha-beta (r(268) = 0.95, p < 0.001) 
and gamma (r(268) = 0.95, p < 0.001) bands.

Figure 3. Stimulus-evoked Event Related Field (ERF) and stimulus-induced spectral responses in the 
different frequency bands. (A) Grand average ERF across trials and subjects (black line) demonstrating the 
stimulus evoked response. Blue shaded area presents the standard deviation across subjects. (B) Spectrogram 
demonstrating the relative change in oscillatory power with respect to the pre-stimulus period (−250 ms to 
stimulus onset). Black vertical lines: stimulus onset and offset. Dashed rectangles: selected frequency bands and 
time window. (C) Temporal changes in the power of each frequency band, averaged across the selected sensors, 
all trials, and subjects. Dashed vertical lines: stimulus onset and offset. Gray filling: window over which neural 
variability quenching was computed in subsequent analyses. Horizontal lines on bottom indicate time segments 
where the change in power of each band was significantly different from zero (p < 0.05, two-tailed permutation 
test, cluster corrected). (D) Topographic maps of mean power change 200–700 ms after stimulus presentation, 
relative to the pre-stimulus period in units of percent signal change (averaged across trials and subjects).
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Figure 4. Trial-by-trial neural variability changes following stimulus presentation. (A) Neural variability over 
time in units of percent change relative to the pre-stimulus period, averaged across selected sensors and all 
subjects. Blue shaded area: confidence interval across subjects. Dashed vertical lines: stimulus onset and offset. 
Gray background: window with sustained neural variability quenching. (B) Neural variability quenching within 
each isolated frequency band (delta, alpha-beta, or gamma) when using band-pass filters. Time segments 
where variability was significantly different from zero are marked in the lower panel (p < 0.05, two-tailed 
permutation test, cluster corrected). (C) Neural variability quenching after eliminating each frequency band 
from the data using band-stop filters. Time segments where variability was significantly different from that in 
the original signal (OS) are marked in the lower panel (p < 0.05, two-tailed permutation test, cluster corrected). 
(D) Topographic maps of neural variability changes 200–700 ms after stimulus presentation, relative to the pre-
stimulus period, after isolating each of the frequency bands.
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Individual differences. In line with previous studies10, individual subjects exhibited distinct magnitudes 
of neural variability quenching. These individual differences were strongly correlated with the magnitudes of 
stimulus-induced power changes (Fig. 5) in the delta (r(23) = 0.59, p = 0.003) and alpha-beta (r(23) = 0.93, 
p < 0.001) frequency-bands, but not in the gamma band (r(23) = −0.17, p = 0.44). These results demonstrate 
that individual differences in variability quenching were best explained by individual differences in alpha-beta 
band power reductions, which explained 86% of between-subject differences (adjusted R2 = 0.86, AIC = 176.3, 
BIC = 180.9). To examine the combined predictive value of power changes in all three frequency bands on vari-
ability quenching magnitudes, we also performed a multiple regression analysis. The regression model included 
three predictors containing the individual subjects’ power changes in each frequency band. This regression model 
yielded an adjusted R2 value of 0.87 (AIC = 176.5, BIC = 178.8), suggesting that adding the delta and gamma 
power-changes did very little to improve the ability to predict individual variability quenching magnitudes.

Variability quenching is not associated with the timing of neural responses. The results pre-
sented thus far establish that stimulus-induced modulations in alpha-beta band oscillatory power contribute to 
neural variability quenching. Trial-to-trial variability, however, is governed not only by the amplitude of neural 
oscillations (Fig. 1A), but also by their phase (i.e., timing) relative to stimulus presentation (Fig. 1B). We, there-
fore, tested whether variability quenching was also associated with an increase in inter trial phase coherence 
(ITPC). ITPC increased transiently after stimulus onset and offset (Fig. 6A,B) with a time course that corre-
sponded to the appearance of the ERF peaks (Fig. 3A). This ITPC time course was distinct from that of varia-
bility quenching, which was sustained throughout the stimulus presentation (Fig. 4). Furthermore, individual 
magnitudes of variability quenching were not significantly correlated with ITPC changes in any of the exam-
ined frequency bands (Fig. 6C): delta (r(23) = −0.16, p = 0.46), alpha-beta (r(23) = −0.30, p = 0.17), or gamma 
(r(23) = −0.03, p = 0.91). Taken together, these results demonstrate that variability quenching is not associated 
with stimulus-evoked changes in the phase of neural oscillations.

Control analyses. To exclude alternative explanations of the data we examined whether head motion 
affected our measures of neural variability. We computed a mean measure of head motion magnitude for each 
subject (see Methods) and found that there was no significant correlation with neural variability quenching 
(r(23) = 0.12, p = 0.54). Between-subject differences in variability quenching were, therefore, unrelated to indi-
vidual differences in head movements.

Discussion
Our results demonstrate that neural variability quenching is tightly coupled to reductions in alpha-beta band 
power, as measured by MEG. The timing, amplitude, and spatial topography of variability quenching and 
decreases in alpha-beta band power were remarkably similar (Figs 3, 4), and removing the alpha-beta band from 
the data entirely eliminated the variability quenching phenomenon (Fig. 4C). The strong relationship between 
changes in oscillatory power in this frequency band and neural variability were also apparent when examin-
ing individual subject differences (Fig. 5). Specifically, individual magnitudes of alpha-beta band power changes 
explained 86% of between-subject differences in neural variability quenching. In contrast, removing the delta or 
gamma band from the data had little effect on the magnitude of variability quenching (Fig. 4), and adding indi-
vidual differences in delta or gamma band power as predictors in a multiple regression model did not increase the 
explanatory power beyond what was already described with alpha-beta band changes (adjusted R2 = 0.87). Taken 
together, these findings suggest that neural variability quenching is tightly coupled with changes in alpha-beta 
band power that are induced by the presentation of a stimulus.

While neural variability quenching was strongly related to the amplitude of induced oscillatory power, it was 
not related to the phase-locking of neural oscillations. The time course of ITPC changes did not correspond to 
the time course of neural variability quenching, and individual subject ITPC magnitudes were not correlated 

Figure 5. Individual magnitudes of variability-quenching were strongly correlated with relative changes 
in MEG power of specific frequency bands. Scatter plots demonstrating the correlation between individual 
magnitudes of variability quenching and changes in delta, alpha-beta, or gamma band power. Linear fit lines, 
Pearson’s correlation coefficients (R) and significance level (P) are presented in each panel.
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with neural variability quenching magnitudes (Fig. 6). Hence, cortical responses to sensory stimuli are character-
ized by relatively high reproducibility (i.e., low trial-by-trial variability) that is dependent on stimulus-induced 
decreases in alpha-beta band power rather than stimulus-evoked phase resetting.

Event related desynchronization and synchronization. Stimulus or task induced reductions in 
oscillatory power, primarily in the alpha-beta band, are commonly referred to as ERD17,18, which is thought to 
coincide with increased synchronization in gamma band oscillations and increased multi-unit activity20. These 
concomitant changes in cortical oscillatory power are thought to represent the transition of cortical state from an 
idle “resting-state” to an active state of anticipation, sensory processing, and/or task initiation. It is believed that 
such oscillatory changes are essential for synchronizing the activity of task-related cortical neural ensembles34,35. 
Previous studies have not examined how these changes in oscillatory power relate to measures of trial-by-trial 
neural variability.

We selected the current experiment, utilizing MEG recordings and an experimental design with a relatively 
long, salient, moving stimulus, because it is particularly useful for identifying sustained gamma band responses23 
that are difficult to identify with other techniques and experimental designs24,25. Indeed, our results revealed clear 
sustained gamma band responses with focal topography in occipital and parietal sensors (Fig. 3).

We initially hypothesized that we would find a positive correlation between the magnitude of ERD and neural 
variability quenching as well as a negative correlation between the magnitude of gamma band power and neu-
ral variability quenching. This was expected given the inverse relationship between stimulus-induced ERD and 
gamma power. However, we did not find a significant relationship between gamma power and neural variability 
quenching (Fig. 5). This suggests that individual differences in neural variability, in MEG recordings, are mostly 
associated with differences in alpha-beta band oscillations, which are larger in amplitude than gamma band oscil-
lations. Note that gamma band responses have a substantially higher signal to noise ratio in invasive recordings 
of cortical mass activity33. Studying the relationship between neural oscillations and variability quenching using 
intra-cranial recordings is, therefore, highly warranted.

Figure 6. Inter-trial phase coherence (ITPC) was not associated with neural variability quenching. Time/
frequency representations of stimulus-evoked changes in raw ITPC (A), or ITPC changes relative to the pre-
stimulus baseline (B), revealed transient changes following stimulus onset and offset (vertical black lines), 
rather than sustained changes. Dashed rectangles: selected frequency bands and time window (for comparison 
with the previous analyses). (C) Scatter plots demonstrating the lack of correlations between changes in band 
specific ITPC and changes in neural variability, for the delta, alpha-beta, or gamma frequency bands. Linear fit 
lines, Pearson’s correlation coefficients (R) and significance level (P) are presented in each panel.
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Ongoing neural activity. Ongoing neural activity continuously changes and fluctuates in the absence of 
stimuli or tasks thereby creating considerable moment-by-moment neural variability4,36,37. Some studies have 
suggested that these ongoing fluctuations persist during the processing of stimuli4 and execution of tasks38,39 
such that stimulus evoked responses are linearly superimposed on ongoing fluctuations. In such a case one would 
expect similar trial-by-trial neural variability to exist before and after stimulus presentation. Many recent studies, 
however, have shown that trial-by-trial neural variability is dramatically reduced following stimulus presenta-
tion7,9–11,14–16. This suggests that ongoing neural fluctuations do not persist, but are instead altered by the presenta-
tion of a stimulus such that trial-by-trial variability is reduced/quenched.

In mass electrophysiological recordings such as MEG, trial-by-trial variability may be governed by two dis-
tinct factors (Fig. 1). The first is the overall power of ongoing neural oscillations with random phase from trial 
to trial: the larger the power in each of the trials, the larger the variance across trials (Fig. 1A). The second is the 
phase coherence across trials: the larger the coherence, the smaller the variance across trials. Note that these two 
factors are not mutually exclusive (Fig. 1B)22.

Our results suggest that the presentation of a visual stimulus quenches trial-by-trial neural variability by 
reducing induced oscillatory power in the alpha-beta band, rather than by evoking a reproducible phase locked 
response (Figs 3–6). The strong relationship between the ERD and the variability quenching phenomena suggests 
that ongoing neural activity fluctuations are actively suppressed after the presentation of a sensory stimulus, per-
haps to achieve a more reproducible and stable cortical state during sensory processing11.

Behavioral significance. There are several similarities in the behavioral significance that has been assigned 
to the ERD and neural variability phenomena. For example, some have reported that allocating attention reduces 
neural variability across trials14,40–42 while others have reported that allocating attention creates ERD43–45. 
Similarly, some have reported that threshold-level stimuli are accurately perceived on trials with reduced neural 
variability11,46 while others have reported the same on trials with larger ERD47. Finally, individuals with lower 
contrast discrimination thresholds exhibited larger magnitudes of neural variability quenching, which coincided 
with larger ERD magnitudes9. All studies, except the last one, have reported one measure or the other and none 
have directly compared ERD and neural variability measures. We speculate that these independent studies may 
be reporting strongly correlated measures that seem to describe two tightly coupled phenomena.

Limitations. Quenching of trial-by-trial neural variability has been studied with a variety of techniques 
including intra-cellular recordings of membrane potentials, extracellular recordings of single-unit spiking 
activity in animals7, and extra-cranial recordings in humans9,10. While all of these studies have shown similar 
variability quenching approximately 200 ms after stimulus presentation, the specific mechanisms that influence 
trial-by-trial variability in the spiking of single neurons may differ from those that influence trial-by-trial variabil-
ity of large neural populations as measured with MEG. With that said, one recent study reported that reductions 
in trial-by-trial spike count variability (i.e., Fano factor) are significantly correlated with reductions in beta-band 
power of the local field potential, in macaque motor cortex during movement execution48. Further studies are 
necessary to bridge the gaps between different manifestations of neural variability as they appear in single cell 
spiking activity, local field potentials, EEG/MEG, and fMRI.

Another import limitation of the current study is the specific experimental setup and stimulus that was used. 
It may be the case that when employing other tasks or stimuli, the relationship between variability quenching and 
alpha-beta band power may change to some degree. For example, stimulating subjects with steady-state visual 
or auditory stimuli may alter the relative power of specific frequency bands and change the relative contribution 
of specific frequency bands to variability quenching49. In addition, changes in delta or gamma power may have a 
more pronounced impact on variability quenching in other experimental contexts.

conclusions
Our results demonstrate that stimulus-induced reductions in alpha-beta band power are tightly coupled with 
neural variability quenching as apparent in MEG recordings. The suppression of these oscillations, and subse-
quent reduction in trial-by-trial variability, may enable sensory cortices to generate more stable and reproducible 
neural representations of a stimulus across trials, which is likely to be beneficial for accurate perception. This 
appealing conceptual framework, whereby cortical responses involve an active reduction of neural “noise” (i.e., 
neural activity that is not related to the stimulus), is in line with signal detection theory principles50, and fits 
well with the existing literature regarding neural variability quenching and ERD. Quantifying oscillatory power, 
inter-trial phase coherence, and trial-by-trial variability in the same experiments will enable future studies to 
assess the robustness and validity of this conceptual framework across different stimuli, tasks, and recording 
techniques, and determine its behavioral significance.

Data availability
The MEG recordings utilized in the current study along with an explanation regarding their structure will be 
uploaded to an open access server and will be available to anyone who would like to re-analyze them.
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