43 research outputs found

    Occupational cancer in Germany.

    Get PDF
    As in probably mostly all other European countries, the incidence of occupational cancer in Germany increased steadily after World War II. In 1994 about 1,600 cases of occupational cancer were compensated--more than ever before. More than half of these cases were lung cancer, most caused either by asbestos (n=545) or by ionizing radiation ((italic)n(/italic)=306). Other frequent target organs of asbestos were the pleura and the peritoneum with 495 cases of mesotheliomas. Asbestos was the single most important risk factor for occupational cancer, causing more than 1000 deaths per year. All other malignant diseases, such as bladder cancer, leukemia, angiosarcoma of the liver, adenocarcinoma of the nose or nasal sinuses, and skin cancer, were comparatively rare. Although primary exposure to ionizing radiation in uranium ore mining occurred in the 1950s and attributable lung cancers seem to be on the decline, this is not true for asbestos, where the peak incidence in lung cancer and mesothelioma has not been reached yet

    Regression analysis of time trends in perinatal mortality in Germany 1980-1993.

    Get PDF
    Numerous investigations have been carried out on the possible impact of the Chernobyl accident on the prevalence of anomalies at birth and on perinatal mortality. In many cases the studies were aimed at the detection of differences of pregnancy outcome measurements between regions or time periods. Most authors conclude that there is no evidence of a detrimental physical effect on congenital anomalies or other outcomes of pregnancy following the accident. In this paper, we report on statistical analyses of time trends of perinatal mortality in Germany. Our main intention is to investigate whether perinatal mortality, as reflected in official records, was increased in 1987 as a possible effect of the Chernobyl accident. We show that, in Germany as a whole, there was a significantly elevated perinatal mortality proportion in 1987 as compared to the trend function. The increase is 4.8% (p = 0.0046) of the expected perinatal death proportion for 1987. Even more pronounced levels of 8.2% (p = 0. 0458) and 8.5% (p = 0.0702) may be found in the higher contaminated areas of the former German Democratic Republic (GDR), including West Berlin, and of Bavaria, respectively. To investigate the impact of statistical models on results, we applied three standard regression techniques. The observed significant increase in 1987 is independent of the statistical model used. Stillbirth proportions show essentially the same behavior as perinatal death proportions, but the results for all of Germany are nonsignificant due to the smaller numbers involved. Analysis of the association of stillbirth proportions with the (137)Cs deposition on a district level in Bavaria discloses a significant relationship. Our results are in contrast to those of many analyses of the health consequences of the Chernobyl accident and contradict the present radiobiologic knowledge. As we are dealing with highly aggregated data, other causes or artifacts may explain the observed effects. Hence, the findings should be interpreted with caution, and further independent evidence should be sought

    Occupational Lymphohematopoietic Cancer in Korea

    Get PDF
    The purpose of this study was to review the existing studies on lymphohematopoietic (LHP) cancer in Korea, estimate the prevalence of workers exposed to carcinogens, and determine the population attributable fraction (PAF) of leukemia. Two case series and 4 case reports were reviewed. Using official statistics, the prevalence of benzene exposure and ionizing radiation exposure was estimated. Based on the prevalence of exposure and the relative risk, The PAF of leukemia was calculated. Between 1996 and 2005, 51 cases of LHP cancer were reported from the compensation system. Greater than 50% of occupational LHP cancer was leukemia, and the most important cause was benzene. In a cohort study, the standardized incidence ratio was 2.71 (95% CI, 0.56-7.91). The prevalence of exposure was 2.5% and 2.2% in 1995 and 2000, respectively. Using the 1995 prevalence, 3.6-4.8% and 0.1% of cases with leukemia were attributable to benzene and ionizing radiation exposure, respectively, which resulted in 39.7-51.4 cases per year. Benzene is the most important cause of occupational leukemia in Korea. Considering the estimated PAF in this study, the annual number of occupational LHP cancer (51 cases during 10-yr period), might be underreported within the compensation system

    Radon and risk of extrapulmonary cancers: results of the German uranium miners' cohort study, 1960–2003

    Get PDF
    Data from the German miners' cohort study were analysed to investigate whether radon in ambient air causes cancers other than lung cancer. The cohort includes 58 987 men who were employed for at least 6 months from 1946 to 1989 at the former Wismut uranium mining company in Eastern Germany. A total of 20 684 deaths were observed in the follow-up period from 1960 to 2003. The death rates for 24 individual cancer sites were compared with the age and calendar year-specific national death rates. Internal Poisson regression was used to estimate the excess relative risk (ERR) per unit of cumulative exposure to radon in working level months (WLM). The number of deaths observed (O) for extrapulmonary cancers combined was close to that expected (E) from national rates (n=3340, O/E=1.02; 95% confidence interval (CI): 0.98–1.05). Statistically significant increases in mortality were recorded for cancers of the stomach (O/E=1.15; 95% CI: 1.06–1.25) and liver (O/E=1.26; 95% CI: 1.07–1.48), whereas significant decreases were found for cancers of the tongue, mouth, salivary gland and pharynx combined (O/E=0.80; 95% CI: 0.65–0.97) and those of the bladder (O/E=0.82; 95% CI: 0.70–0.95). A statistically significant relationship with cumulative radon exposure was observed for all extrapulmonary cancers (ERR/WLM=0.014%; 95% CI: 0.006–0.023%). Most sites showed positive exposure–response relationships, but these were insignificant or became insignificant after adjustment for potential confounders such as arsenic or dust exposure. The present data provide some evidence of increased risk of extrapulmonary cancers associated with radon, but chance and confounding cannot be ruled out

    Surgically generated aerosol and mitigation strategies: combined use of irrigation, respirators and suction massively reduces particulate matter aerosol

    Get PDF
    Background Aerosol is a health risk to theatre staff. This laboratory study quantifies the reduction in particulate matter aerosol concentrations produced by electrocautery and drilling when using mitigation strategies such as irrigation, respirator filtration and suction in a lab environment to prepare for future work under live OR conditions. Methods We combined one aerosol-generating procedure (monopolar cutting or coagulating diathermy or high-speed diamond- or steel-tipped drilling of cadaveric porcine tissue) with one or multiple mitigation strategies (instrument irrigation, plume suction and filtration using an FFP3 respirator filter) and using an optical particle counter to measure particulate matter aerosol size and concentrations. Results Significant aerosol concentrations were observed during all aerosol-generating procedures with concentrations exceeding 3 × 106 particles per 100 ml. Considerable reductions in concentrations were observed with mitigation. In drilling, suction, FFP3 filtration and wash alone respectively reduced aerosol by 19.3–31.6%, 65.1–70.8% and 97.2 to > 99.9%. The greatest reduction (97.38 to > 99.9%) was observed when combining irrigation and filtration. Coagulating diathermy reduced concentrations by 88.0–96.6% relative to cutting, but produced larger particles. Suction alone, and suction with filtration reduced aerosol concentration by 41.0–49.6% and 88.9–97.4% respectively. No tested mitigation strategies returned aerosol concentrations to baseline. Conclusion Aerosol concentrations are significantly reduced through the combined use of filtration, suction and irrigation. Further research is required to characterise aerosol concentrations in the live OR and to find acceptable exposure limits, and in their absence, to find methods to further reduce exposure to theatre staff

    Lung cancer risk among German male uranium miners: a cohort study, 1946–1998

    Get PDF
    From 1946 to 1990 extensive uranium mining was conducted in the southern parts of the former German Democratic Republic. The overall workforce included several 100 000 individuals. A cohort of 59 001 former male employees of the Wismut Company was established, forming a large retrospective uranium miners' cohort for the time period 1946–1998. Mean duration of follow-up was 30.5 years with a total of 1 801 630 person-years. Loss to follow-up was low at 5.3%. Of the workers, 16 598 (28.1%) died during the study period. Based on 2388 lung cancer deaths, the radon-related lung cancer risk is evaluated. The excess relative risk (ERR) per working level month (WLM) was estimated as 0.21% (95% CI: 0.18–0.24). It was dependent on time since exposure and on attained age. The highest ERR/WLM was observed 15–24 years after exposure and in the youngest age group (<55 years of age). While a strong inverse exposure-rate effect was detected for high exposures, no significant association was detected at exposures below 100 WLM. Excess relative risk /WLM was not modified by duration of exposure. The results would indicate the need to re-estimate the effects of risk modifying factors in current risk models as duration of exposure did not modify the ERR/WLM and there was only a modest decline of ERR/WLM with increasing time since exposure

    Assaying Environmental Nickel Toxicity Using Model Nematodes

    Get PDF
    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species

    Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners

    Get PDF
    PURPOSE: Radon is a risk factor for lung cancer and uranium miners are more exposed than the general population. A genome-wide interaction analysis was carried out to identify genomic loci, genes or gene sets that modify the susceptibility to lung cancer given occupational exposure to the radioactive gas radon. METHODS: Samples from 28 studies provided by the International Lung Cancer Consortium were pooled with samples of former uranium miners collected by the German Federal Office of Radiation Protection. In total, 15,077 cases and 13,522 controls, all of European ancestries, comprising 463 uranium miners were compared. The DNA of all participants was genotyped with the OncoArray. We fitted single-marker and in multi-marker models and performed an exploratory gene-set analysis to detect cumulative enrichment of significance in sets of genes. RESULTS: We discovered a genome-wide significant interaction of the marker rs12440014 within the gene CHRNB4 (OR = 0.26, 95% CI 0.11-0.60, p = 0.0386 corrected for multiple testing). At least suggestive significant interaction of linkage disequilibrium blocks was observed at the chromosomal regions 18q21.23 (p = 1.2 × 10-6), 5q23.2 (p = 2.5 × 10-6), 1q21.3 (p = 3.2 × 10-6), 10p13 (p = 1.3 × 10-5) and 12p12.1 (p = 7.1 × 10-5). Genes belonging to the Gene Ontology term "DNA dealkylation involved in DNA repair" (GO:0006307; p = 0.0139) or the gene family HGNC:476 "microRNAs" (p = 0.0159) were enriched with LD-blockwise significance. CONCLUSION: The well-established association of the genomic region 15q25 to lung cancer might be influenced by exposure to radon among uranium miners. Furthermore, lung cancer susceptibility is related to the functional capability of DNA damage signaling via ubiquitination processes and repair of radiation-induced double-strand breaks by the single-strand annealing mechanism

    The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers

    Get PDF
    BACKGROUND: Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. METHODS: The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. RESULTS: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. CONCLUSIONS: Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. IMPACT: Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126-35. ©2016 AACR

    The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers

    Full text link
    corecore