435 research outputs found

    A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus

    Get PDF
    Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for > 60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in similar to 30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.Publisher PDFPeer reviewe

    Correlative Microscopy of Morphology and Luminescence of Cu porphyrin aggregates

    Full text link
    Transfer of energy and information through molecule aggregates requires as one important building block anisotropic, cable-like structures. Knowledge on the spatial correlation of luminescence and morphology represents a prerequisite in the understanding of internal processes and will be important for architecting suitable landscapes. In this context we study the morphology, fluorescence and phosphorescence of molecule aggregate structures on surfaces in a spatially correlative way. We consider as two morphologies, lengthy strands and isotropic islands. It turns out that phosphorescence is quite strong compared to fluorescence and the spatial variation of the observed intensities is largely in line with the amount of dye. However in proportion, the strands exhibit more fluorescence than the isotropic islands suggesting weaker non-radiative channels. The ratio fluorescence to phosphorescence appears to be correlated with the degree of aggregation or internal order. The heights at which luminescence saturates is explained in the context of attenuation and emission multireflection, inside the dye. This is supported by correlative photoemission electron microscopy which is more sensitive to the surface region. The lengthy structures exhibit a pronounced polarization dependence of the luminescence with a relative dichroism up to about 60%, revealing substantial perpendicular orientation preference of the molecules with respect to the substrate and parallel with respect to the strands

    Evaluating the performance of ionic liquid coatings for mitigation of spacecraft surface charges

    Full text link
    To reduce the impact of charging effects on satellites, cheap and lightweight conductive coatings are desirable. We mimic space-like charging environments in ultra-high vacuum (UHV) chambers during deposition of charges via the electron beam of a scanning electron microscope (SEM). We use the charge induced signatures in SEM images of a thin ionic liquid (IL) film on insulating surfaces such as glass, to assess the general performance of such coatings. In order to get a reference structure in SEM, the samples were structured by nanosphere lithography and coated with IL. The IL film (we choose BMP DCA, due to its beneficial physical properties) was applied ex situ and a thickness of 10 to 30 nm was determined by reflectometry. Such an IL film is stable under vacuum conditions. It would also only lead to additional mass of below 20 mg/m2^2. At about 5 A/m2≈3⋅1019^2 \approx 3\cdot10^{19} e/(s⋅\cdotm2^2), a typical sample charging rate in SEM, imaging is possible with no noticeable contrast changes over many hours; this electron current density is already 6 orders of magnitudes higher than "worst case geosynchronous environments" of 3⋅10−63\cdot10^{-6} A/m2^2. Measurements of the surface potential are used for further insights in the reaction of IL films to the electron beam of a SEM. Participating mechanisms such as polarization or reorientation will are discussed.Comment: Submitted to Proceedings of the 14th IAA Symposium on Small Satellites for Earth System Observatio

    LISA Metrology System - Final Report

    No full text
    Gravitational Waves will open an entirely new window to the Universe, different from all other astronomy in that the gravitational waves will tell us about large-scale mass motions even in regions and at distances totally obscured to electromagnetic radiation. The most interesting sources are at low frequencies (mHz to Hz) inaccessible on ground due to seismic and other unavoidable disturbances. For these sources observation from space is the only option, and has been studied in detail for more than 20 years as the LISA concept. Consequently, The Gravitational Universe has been chosen as science theme for the L3 mission in ESA's Cosmic Vision program. The primary measurement in LISA and derived concepts is the observation of tiny (picometer) pathlength fluctuations between remote spacecraft using heterodyne laser interferometry. The interference of two laser beams, with MHz frequency difference, produces a MHz beat note that is converted to a photocurrent by a photodiode on the optical bench. The gravitational wave signal is encoded in the phase of this beat note. The next, and crucial, step is therefore to measure that phase with Âľcycle resolution in the presence of noise and other signals. This measurement is the purpose of the LISA metrology system and the subject of this report

    Graphene for spintronics: giant Rashba splitting due to hybridization with Au

    Full text link
    Graphene in spintronics has so far primarily meant spin current leads of high performance because the intrinsic spin-orbit coupling of its pi-electrons is very weak. If a large spin-orbit coupling could be created by a proximity effect, the material could also form active elements of a spintronic device such as the Das-Datta spin field-effect transistor, however, metal interfaces often compromise the band dispersion of massless Dirac fermions. Our measurements show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (~100 meV) in the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals hybridization with Au-5d states as the source for the giant spin-orbit splitting. An ab initio model of the system shows a Rashba-split dispersion with the analytically predicted gapless band topology around the Dirac point of graphene and indicates that a sharp graphene-Au interface at equilibrium distance will account for only ~10 meV spin-orbit splitting. The ab initio calculations suggest an enhancement due to Au atoms that get closer to the graphene and do not violate the sublattice symmetry.Comment: 16 pages (3 figures) + supplementary information 16 pages (14 figures

    Psychometric evaluation of the nine-item problematic Internet use questionnaire (PIUQ-9) in nine European samples of internet users

    Get PDF
    Objectives: The nine-item Problematic Internet Use Questionnaire (PIUQ-9) is a brief self-report screening instrument for problematic internet use. The main objective of the present study was to explore the psychometric properties of the PIUQ-9 among nine different language-based samples of European internet users (Italian, German, French, Polish, Turkish, Hungarian, English, and Greek). Methods: The total sample comprised 5,593 internet users (38.1% men), aged between 18 and 87 years (M = 25.81; SD = 8.61). Via online recruitment, participants completed the PIUQ-9, the Brief Symptom Inventory (BSI) and items about time spent online. Results: Confirmatory factor analysis demonstrated that the bifactor model with one general factor (i.e., general problem) and two-specific factors (i.e., obsession and neglect + control disorder) yielded acceptable or good fit indices in all subsamples except for one. The common variance index in the bifactor model indicated that the general problem factor explained from 57.0 to 76.5% of common variance, which supports the presence of a strong global factor. According to the multiple indicators multiple causes (MIMIC) model, psychiatric symptoms had a moderate-to-strong direct effect on the general problem factor in all subsamples, ranging from β = 0.28 to β = 0.52 supporting the construct validity of the scale. Furthermore, in a majority of the subsamples, time spent online during the weekend had considerably higher effect sizes on the general problem factor than time spent online during weekdays. Conclusion: The present study highlights the appropriate psychometric properties of the PIUQ-9 across a number of European languages and cultures
    • …
    corecore