204 research outputs found
Dimensional and Temperature Crossover in Trapped Bose Gases
We investigate the long-range phase coherence of homogeneous and trapped Bose
gases as a function of the geometry of the trap, the temperature, and the
mean-field interactions in the weakly interacting limit. We explicitly take
into account the (quasi)condensate depletion due to quantum and thermal
fluctuations, i.e., we include the effects of both phase and density
fluctuations. In particular, we determine the phase diagram of the gas by
calculating the off-diagonal one-particle density matrix and discuss the
various crossovers that occur in this phase diagram and the feasibility of
their experimental observation in trapped Bose gases.Comment: One figure added, typos corrected, refernces adde
Extension of Bogoliubov theory to quasi-condensates
We present an extension of the well-known Bogoliubov theory to treat low
dimensional degenerate Bose gases in the limit of weak interactions and low
density fluctuations. We use a density-phase representation and show that a
precise definition of the phase operator requires a space discretisation in
cells of size . We perform a systematic expansion of the Hamiltonian in
terms of two small parameters, the relative density fluctuations inside a cell
and the phase change over a cell. The resulting macroscopic observables can be
computed in one, two and three dimensions with no ultraviolet or infrared
divergence. Furthermore this approach exactly matches Bogoliubov's approach
when there is a true condensate. We give the resulting expressions for the
equation of state of the gas, the ground state energy, the first order and
second order correlations functions of the field. Explicit calculations are
done for homogeneous systems.Comment: 32 pages, 2 figures; typos corrected in revised versio
Exact calculation of the skyrmion lifetime in a ferromagnetic Bose condensate
The tunneling rate of a skyrmion in ferromagnetic spin-1/2 Bose condensates
through an off-centered potential barrier is calculated exactly with the
periodic instanton method. The prefactor is shown to depend on the chemical
potential of the core atoms, at which level the atom tunnels. Our results can
be readily extended to estimate the lifetime of other topological excitations
in the condensate, such as vortices and monopoles.Comment: 16 pages, 4 figures, to appear Phys. Rev.
Nonlinear dynamics of Bose-condensed gases by means of a low- to high-density variational approach
We propose a versatile variational method to investigate the spatio-temporal
dynamics of one-dimensional magnetically-trapped Bose-condensed gases. To this
end we employ a \emph{q}-Gaussian trial wave-function that interpolates between
the low- and the high-density limit of the ground state of a Bose-condensed
gas. Our main result consists of reducing the Gross-Pitaevskii equation, a
nonlinear partial differential equation describing the T=0 dynamics of the
condensate, to a set of only three equations: \emph{two coupled nonlinear
ordinary differential equations} describing the phase and the curvature of the
wave-function and \emph{a separate algebraic equation} yielding the generalized
width. Our equations recover those of the usual Gaussian variational approach
(in the low-density regime), and the hydrodynamic equations that describe the
high-density regime. Finally, we show a detailed comparison between the
numerical results of our equations and those of the original Gross-Pitaevskii
equation.Comment: 11 pages, 12 figures, submitted to Phys. Rev. A, January 200
In-situ velocity imaging of ultracold atoms using slow--light
The optical response of a moving medium suitably driven into a slow-light
propagation regime strongly depends on its velocity. This effect can be used to
devise a novel scheme for imaging ultraslow velocity fields. The scheme turns
out to be particularly amenable to study in-situ the dynamics of collective and
topological excitations of a trapped Bose-Einstein condensate. We illustrate
the advantages of using slow-light imaging specifically for sloshing
oscillations and bent vortices in a stirred condensate
Hydrodynamic behavior in expanding thermal clouds of Rb-87
We study hydrodynamic behavior in expanding thermal clouds of Rb-87 released
from an elongated trap. At our highest densities the mean free path is smaller
than the radial size of the cloud. After release the clouds expand
anisotropically. The cloud temperature drops by as much as 30%. This is
attributed to isentropic cooling during the early stages of the expansion. We
present an analytical model to describe the expansion and to estimate the
cooling. Important consequences for time-of-flight thermometry are discussed.Comment: 7 pages with 2 figure
Dynamics of a classical gas including dissipative and mean field effects
By means of a scaling ansatz, we investigate an approximated solution of the
Boltzmann-Vlasov equation for a classical gas. Within this framework, we derive
the frequencies and the damping of the collective oscillations of a
harmonically trapped gas and we investigate its expansion after release of the
trap. The method is well suited to studying the collisional effects taking
place in the system and in particular to discussing the crossover between the
hydrodynamic and the collisionless regimes. An explicit link between the
relaxation times relevant for the damping of the collective oscillations and
for the expansion is established.Comment: 4 pages, 1 figur
Singular Short Range Potentials in the J-Matrix Approach
We use the tools of the J-matrix method to evaluate the S-matrix and then
deduce the bound and resonance states energies for singular screened Coulomb
potentials, both analytic and piecewise differentiable. The J-matrix approach
allows us to absorb the 1/r singularity of the potential in the reference
Hamiltonian, which is then handled analytically. The calculation is performed
using an infinite square integrable basis that supports a tridiagonal matrix
representation for the reference Hamiltonian. The remaining part of the
potential, which is bound and regular everywhere, is treated by an efficient
numerical scheme in a suitable basis using Gauss quadrature approximation. To
exhibit the power of our approach we have considered the most delicate region
close to the bound-unbound transition and compared our results favorably with
available numerical data.Comment: 14 pages, 5 tables, 2 figure
Thermal compression of atomic hydrogen on helium surface
We describe experiments with spin-polarized atomic hydrogen gas adsorbed on
liquid He surface. The surface gas density is increased locally by
thermal compression up to cm at 110 mK. This
corresponds to the onset of quantum degeneracy with the thermal de-Broglie
wavelength being 1.5 times larger than the mean interatomic spacing. The atoms
were detected directly with a 129 GHz electron-spin resonance spectrometer
probing both the surface and the bulk gas. This, and the simultaneous
measurement of the recombination power, allowed us to make accurate studies of
the adsorption isotherm and the heat removal from the adsorbed hydrogen gas.
From the data, we estimate the thermal contact between 2D hydrogen gas and
phonons of the helium film. We analyze the limitations of the thermal
compression method and the possibility to reach the superfluid transition in 2D
hydrogen gas.Comment: 20 pages, 11 figure
Mean field effects in a trapped classical gas
In this article, we investigate mean field effects for a bosonic gas
harmonically trapped above the transition temperature in the collisionless
regime. We point out that those effects can play also a role in low dimensional
system. Our treatment relies on the Boltzmann equation with the inclusion of
the mean field term.
The equilibrium state is first discussed. The dispersion relation for
collective oscillations (monopole, quadrupole, dipole modes) is then derived.
In particular, our treatment gives the frequency of the monopole mode in an
isotropic and harmonic trap in the presence of mean field in all dimensions.Comment: 4 pages, no figure submitted to Phys. Rev.
- âŠ