66 research outputs found
Proposal for a multilevel university cybermetric analysis model
The final publication is available at Springer via http://dx.doi.org/10.1007/s11192-012-0868-5Universities’ online seats have gradually become complex systems of dynamic information where all their institutions and services are linked and potentially accessible. These online seats now constitute a central node around which universities construct and document their main activities and services. This information can be quantitative measured by cybermetric techniques in order to design university web rankings, taking the university as a global reference unit. However, previous research into web subunits shows that it is possible to carry out systemic web analyses, which open up the possibility of carrying out studies which address university diversity, necessary for both describing the university in greater detail and for establishing comparable ranking units. To address this issue, a multilevel university cybermetric analysis model is proposed, based on parts (core and satellite), levels (institutional and external) and sublevels (contour and internal), providing a deeper analysis of institutions. Finally the model is integrated into another which is independent of the technique used, and applied by analysing Harvard University as an example of use.Orduña Malea, E.; Ontalba RuipĂ©rez, JA. (2013). Proposal for a multilevel university cybermetric analysis model. Scientometrics. 95(3):863-884. doi:10.1007/s11192-012-0868-5S863884953Acosta Márquez, T., Igartua Perosanz, J.J. & GĂłmez Isla, J. (2009). Páginas web de las universidades españolas. Enred: revista digital de la Universidad de Salamanca, 5 [online; discontinued].Aguillo, I. F. (1998). Hacia un concepto documental de sede web. El Profesional de la InformaciĂłn, 7(1–2), 45–46.Aguillo, I. F. (2009). Measuring the institutions’ footprint in the web. Library Hi Tech, 27(4), 540–556.Aguillo, I. F., Granadino, B., Ortega, J. L., & Prieto, J. A. (2006). Scientific research activity and communication measured with cybermetrics indicators. Journal of the American Society for Information Science and Technology, 57(10), 1296–1302.Aguillo, I. F., Ortega, J. L., & Fernández, M. (2008). Webometric Ranking of World Universities: introduction, methodology, and future developments. Higher Education in Europe, 33(2/3), 234–244.Ayan, N., Li, W.-S., & Kolak, O. (2002). Automatic extraction of logical domains in a web site. Data & Knowledge Engineering, 43(2), 179–205.Barjak, F., Li, X., & Thelwall, M. (2007). Which factors explain the Web impact of scientists’ personal homepages? Journal of the American Society for Information Science and Technology, 58(2), 200–211.Berners-Lee, T., & Fischetti, M. (2000). Tejiendo la Red. Madrid: Siglo XXI.Björneborn, L., & Ingwersen, P. (2004). Toward a basic framework for webometrics. Journal of the American Society for Information Science and Technology, 55(14), 1216–1227.Buenadicha, M., Chamorro, A., Miranda, F. J., & González, O. R. (2001). A new web assessment index: Spanish Universities Analysis. Internet Research, 11(3), 226–234.Castells, M. (2001). La galaxia Internet. Barcelona: Plaza y JanĂ©s.Chu, H., He, S., & Thelwall, M. (2002). Library and Information Science Schools in Canada and USA: a Webometric perspective. Journal of Education for Library and Information Science, 43(2), 110–125.Crowston, K., & Williams, M. (2000). Reproduced and Emergent Genres of Communication on the World Wide Web. The Information Society: an International Journal, 16(3), 201–215.Goldfarb, A. (2006). The (teaching) role of universities in the diffusion of the Internet. International Journal of Industrial Organization, 24(2), 203–225.Ingwersen, P. (1998). The calculation of web impact factors. Journal of Documentation, 54(2), 236–243.Katz, R. N. (2008a). The tower and the cloud: Higher education in the age of cloud computing. USA: Educause.Katz, R. N. (2008b). The gathering cloud: is this the end of the middle. In R. N. Katz (Ed.), The tower and the cloud: Higher education in the age of cloud computing (p. 2008). USA: Educause.Li, X. (2005). National and international university departmental Web site interlinking: a webometric analysis. [Unpublished doctoral dissertation]. Wolverhampton, UK: University of Wolverhampton.Li, X., Thelwall, M., Musgrove, P., & Wilkinson, D. (2003). The relationship between the links/Web Impact Factors of computer science departments in UK and their RAE (Research Assessment Exercise) ranking in 2001. Scientometrics, 57(2), 239–255.Middleton, I., McConnell, M., & Davidson, G. (1999). Presenting a model for the structure and content of a University World Wide Web site. Journal of Information Science, 25(3), 217–219.Orduña-Malea, E. (2012). Propuesta de un modelo de análisis redinformĂ©trico multinivel para el estudio sistĂ©mico de las universidades españolas (2010). Valencia: Polytechnic University of Valencia.Ortega, J. L., & Aguillo, Isidro. F. (2007). La web acadĂ©mica española en el contexto del Espacio Europeo de EducaciĂłn Superior: estudio exploratorio. El profesional de la informaciĂłn, 16(5), 417–425.Pareja, V. M., Ortega, J. L., Prieto, J. A., Arroyo, N., & Aguillo, I. F. (2005). Desarrollo y aplicaciĂłn del concepto de sede web como unidad documental de análisis en CibermetrĂa. Jornadas Españolas de DocumentaciĂłn, 9, 325–340.SaorĂn, T. (2012). Arquitectura de la dispersiĂłn: gestionar los riesgos cĂclicos de fragmentaciĂłn de las webs corporativas. Anuario ThinkEPI, 6, 281–287.Tang, R., & Thelwall, M. (2003). U.S. academic departmental Web-site interlinking: disciplinary differences. Library & Information Science Research, 25(4), 437–458.Tang, R., & Thelwall, M. (2004). Patterns of national and international web inlinks to US academic departments: an analysis of disciplinary variations. Scientometrics, 60(3), 475–485.Thelwall, M. (2002a). A research and institutional size based model for national university Web site interlinking. Journal of Documentation, 58(6), 683–694.Thelwall, M. (2002b). Conceptualizing documentation on the Web: an evaluation of different heuristic-based models for counting links between university web sites. Journal of the American Society for Information Science and Technology, 53(12), 995–1005.Thelwall, M. (2003). Web use and peer interconnectivity metrics for academic Web sites. Journal of Information Science, 29(1), 11–20.Thelwall, M. (2009). Introduction to Webometrics: quantitative web research for the social sciences. San Rafael: Morgan & Claypool.Thelwall, M., & Harries, G. (2004a). Can personal Web pages that link to universities yield information about the wider dissemination of research? Journal of Information Science, 30(3), 243–256.Thelwall, M., & Harries, G. (2004b). Do better scholars’ Web publications have significantly higher online impact? Journal of American Society for Information Science and Technology, 55(2), 149–159.Thelwall, M., Vaughan, L., & Björneborn, L. (2005). Webometrics. Annual Review of Information Science and Technology, 39, 81–135.Thomas, O., & Willet, P. (2000). Webometric analysis of Departments of librarianship and information science. Journal of Information Science, 26(6), 421–428.TĂscar, L. (2009). El papel de la universidad en la construcciĂłn de su identidad digital. Revista de universidad y sociedad del conocimiento, 6(1), 15–21.Van Vught, F. A. (2009). Diversity and differentiation in higher education. In F. Van Vught (Ed.), Mapping the higher education landscape: toward a European classification of higher education (pp. 1–16). The Netherlands: Springer.Yolku, O. (2001). Use of news articles and announcements on official websites of universities. Turkish Online Journal of Educational Technology, 10(2), 287–296
U.S. academic libraries: understanding their web presence and their relationship with economic indicators
The final publication is available at Springer via http://dx.doi.org/10.1007/s11192-013-1001-0The main goal of this research is to analyze the web structure and performance of units and services belonging to U.S. academic libraries in order to check their suitability for webometric studies. Our objectives include studying their possible correlation with economic data and assessing their use for complementary evaluation purposes. We conducted a survey of library homepages, institutional repositories, digital collections, and online catalogs (a total of 374 URLs) belonging to the 100 U.S. universities with the highest total expenditures in academic libraries according to data provided by the National Center for Education Statistics. Several data points were taken and analyzed, including web variables (page count, external links, and visits) and economic variables (total expenditures, expenditures on printed and electronic books, and physical visits). The results indicate that the variety of URL syntaxes is wide, diverse and complex, which produces a misrepresentation of academic libraries’ web resources and reduces the accuracy of web analysis. On the other hand, institutional and web data indicators are not highly correlated. Better results are obtained by correlating total library expenditures with URL mentions measured by Google (r = 0.546) and visits measured by Compete (r = 0.573), respectively. Because correlation values obtained are not highly significant, we estimate such correlations will increase if users can avoid linkage problems (due to the complexity of URLs) and gain direct access to log files (for more accurate data about visits).Orduña Malea, E.; Regazzi, JJ. (2014). U.S. academic libraries: understanding their web presence and their relationship with economic indicators. Scientometrics. 98(1):315-336. doi:10.1007/s11192-013-1001-0S315336981Adecannby, J. (2011). Web link analysis of interrelationship between top ten African universities and world universities. Annals of library and information studies, 58(2), 128–138.Aguillo, I. F. (2009). Measuring the institutions’ footprint in the web. Library Hi Tech, 27(4), 540–556.Aguillo, I. F., Ortega, J. L., & Fernández, M. (2008). Webometric Ranking of World Universities: Introduction, methodology, and future developments. Higher education in Europe, 33(2/3), 234–244.Aguillo, I. F., Ortega, J. L., Fernandez, M., & Utrilla, A. M. (2010). Indicators for a webometric ranking of open Access repositories. Scientometrics, 82(3), 477–486.Arakaki, M., & Willet, P. (2009). Webometric analysis of departments of librarianship and information science: A follow-up study. Journal of information science, 35(2), 143–152.Arlitsch, K., & O’Brian, P. S. (2012). Invisible institutional repositories: Addresing the low indexing ratios of IR in Google Scholar. Library Hi Tech, 30(1), 60–81.Bar-Ilan, J. (1999). Search engine results over time—A case study on search engine stability”. Cybermetrics, 2/3. Retrieved February 18, 2013 from http://www.cindoc.csic.es/cybermetrics/articles/v2i1p1.html.Bar-Ilan, J. (2001). Data collection methods on the Web for informetric purposes: A review and analysis. Scientometrics, 50(1), 7–32.Bermejo, F. (2007). The internet audience: Constitution & measurement. New York: Peter Lang Pub Incorporated.Buigues-Garcia, M., & Gimenez-Chornet, V. (2012). Impact of Web 2.0 on national libraries. International Journal of Information Management, 32(1), 3–10.Chu, H., He, S., & Thelwall, M. (2002). Library and information science schools in Canada and USA: A Webometric perspective. Journal of education for Library and Information Science, 43(2), 110–125.Chua, Alton, Y. K., & Goh, D. H. (2010). A study of Web 2.0 applications in library websites. Library and Information Science Research, 32(3), 203–211.Gallego, I., GarcĂa, I.-M., & RodrĂguez, L. (2009). Universities’ websites: Disclosure practices and the revelation of financial information. The International Journal of Digital Accounting Research, 9(15), 153–192.Gomes, B. & Smith, B. T. (2003). Detecting query-specific duplicate documents. [Patent]. Retrieved February 18, 2013 from http://www.patents.com/Detecting-query-specific-duplicate-documents/US6615209/en-US .Harinarayana, N. S., & Raju, N. V. (2010). Web 2.0 features in university library web sites. Electronic Library, 28(1), 69–88.Lewandowski, D., Wahlig, H., & Meyer-Bautor, G. (2006). The freshness of web search engine databases. Journal of Information Science, 32(2), 131–148.Mahmood, K., & Richardson, J. V, Jr. (2012). Adoption of Web 2.0 in US academic libraries: A survey of ARL library websites. Program, 45(4), 365–375.Orduña-Malea, E., & Ontalba-RuipĂ©rez, J-A. (2012). Selective linking from social platforms to university websites: A case study of the Spanish academic system. Scientometrics. (in press).Ortega, J. L., & Aguillo, I. F. (2009). Mapping World-class universities on the Web. Information Processing and Management, 45(2), 272–279.Ortega, JosĂ© L. & Aguillo, Isidro F. (2009b). North America Academic Web Space: Multicultural Canada vs. The United States Homogeneity. In: ASIST & ISSI pre-conference symposium on informetrics and scientometrics.Phan, T., Hardesty, L., Sheckells, C., & George, A. (2009). Documentation for the academic libraries survey (ALS) public-use data file: Fiscal year 2008. Washington DC: National Center for Education Statistics. Institute of Education Sciences U.S. Department of Education.Qiu, J., Cheng, J., & Wang, Z. (2004). An analysis of backlinks counts and web impact factors for Chinese university websites. Scientometrics, 60(3), 463–473.Regazzi, J. J. (2012a). Constrained?—An analysis of U.S. Academic Libraries and shifts in spending, staffing and utilization, 1998–2008. College and Research Libraries, 73(5), 449–468.Regazzi, J. J. (2012b). Comparing Academic Library Spending with Public Libraries, Public K-12 Schools, Higher Education Public Institutions, and Public Hospitals Between 1998–2008. Journal of Academic Librarianship, 38(4), 205–216.Rousseau, R. (1999). Daily time series of common single word searches in AltaVista and NorthernLight. Cybermetrics, 2/3. Retrieved February 18, 2013 from http://www.cindoc.csic.es/cybermetrics/articles/v2i1p2.html .Sato, S., & Itsumura, H. (2011). How do people use open access papers in non-academic activities? A link analysis of papers deposited in institutional repositories. Library, Information and Media Studies, 9(1), 51–64.Scholze, F. (2007). Measuring research impact in an open access environment. Liber Quarterly: The Journal of European Research Libraries, 17(1–4), 220–232.Smith, A. G. (2011). Wikipedia and institutional repositories: An academic symbiosis? In: Proceedings of the ISSI 2011 conference. Durban, South Africa, 4–7 July 2011. Retrieved February 18, 2013 from http://www.vuw.ac.nz/staff/alastair_smith/publns/SmithAG2011_ISSI_paper.pdf .Smith, A.G. (2012). Webometric evaluation of institutional repositories. In: Proceedings of the 8th international conference on webometrics informetrics and scientometrics & 13th collnet meeting. Seoul (Korea), 722–729.Smith, A., & Thelwall, M. (2002). Web impact factors for Australasian Universities. Scientometrics, 54(3), 363–380.Tang, R., & Thelwall, M. (2008). A hyperlink analysis of US public and academic libraries’ web sites. Library Quarterly, 78(4), 419–435.Thelwall, M. (2008). Extracting accurate and complete results from search engines: Case study Windows Live. Journal of the American Society for Information Science and Technology, 59(1), 38–50.Thelwall, M. (2009). Introduction to webometrics: Quantitative web research for the social sciences. San Rafael: Morgan & Claypool.Thelwall, M., & Sud, P. (2011). A comparison of methods for collecting web citation data for academic organisations. Journal of the American Society for Information Science and Technology, 62(8), 1488–1497.Thelwall, M., Sud, P., & Wilkinson, D. (2012). Link and co-inlink network diagrams with URL citations or title mentions. Journal of the American Society for Information Science and Technology, 63(10), 1960–1972.Thelwall, M., & Zuccala, A. (2008). A University-centred European Union link analysis. Scientometrics, 75(3), 407–442.Uyar, A. (2009a). Google stemming mechanisms. Journal of Information Science, 35(5), 499–514.Uyar, A. (2009b). Investigation of the accuracy of search engine hit counts. Journal of Information Science, 35(4), 469–480.Zuccala, A., Thelwall, M., Oppenheim, C., & Dhiensa, R. (2007). Web intelligence analyses of digital libraries: A case study of the National Electronic Library for Health (NeLH). Journal of Documentation, 63(4), 558–589
Multiple cycles of dose-intensive chemotherapy with repeated stem cell support as induction treatment in metastatic breast cancer: a feasibility study
The purpose of this trial was to study feasibility and tolerance of a dose-intensive multicyclic alternating induction chemotherapy with repeated stem cell support in a series of 43 metastatic breast cancer patients. Anthracycline-naive patients (n = 21) received cyclophosphamide 2.5 g/m2 plus doxorubicin 80 mg/m2 alternating every 14 days with paclitaxel 200-350 mg/m2 plus cisplatin 120 mg/m2. Patients who had previously received anthracyclines (n = 22) received cisplatin 120 mg/m2 plus etoposide 600 mg/m2 alternating with paclitaxel 200-350 mg/m2 plus ifosfamide 8 g/m2. Peripheral blood stem cells were infused after every course except the first, with a median CD34+ dose of 2.1 ´ 106/kg per cycle. Positive selection of CD34+ cells was performed in good mobilizers. The median number of cycles administered was six (4-8), and the time interval between them was 17 days. Median summation dose intensities (SDI) actually administered for the CA-TP and PE-TI protocol were 4.95 and 4.69, respectively (87% of scheduled SDI). There were 15 complete (35%) and 21 partial responses (49%), for an overall response rate of 84% (95% CI, 73%-95%). Infection or neutropenic fever occurred in 50% of the cycles. There was one treatment-related death. After a median follow-up of 26 months, the median event-free-survival was 12 months (95% CI: 10-14) and overall survival was 31 months. These high dose-intensity induction treatments seem to be feasible with sequential stem cell support
Breast cancer Multiple cycles of dose-intensive chemotherapy with repeated stem cell support as induction treatment in metastatic breast cancer: a feasibility study
Summary: The purpose of this trial was to study feasibility and tolerance of a dose-intensive multicyclic alternating induction chemotherapy with repeated stem cell support in a series of 43 metastatic breast cancer patients. ades. Extensive literature reviews by Hryniuk et al 1,2 have found dose intensity to be correlated with response rate and survival. This effect has been considered in the rationale of many clinical trials that attempted to improve long-term survival in metastatic BC by delivering single courses of high-dose chemotherapy (HDC). Despite some promising data derived from phase II trials, results of the randomized studies published thus far have failed to show a sound clinical benefit for single autografts. 8 Multicyclic treatment schemes appear to take advantage of the inherent time-dependant responsiveness of most cancer tissues. Autologous peripheral blood stem cell infusions have been extensively used to support single courses of HDC. Nonetheless, their possible use in programs of multicyclic non-myeloablative dose-intense chemotherapy has been little explored. Materials and methods Women with histologically proven metastatic BC were evaluated for study entry. An ECOG performance status of 0-1, age less than 65 years, and no evidence of cardiac, pulmonary, liver or renal impairment were required. All patients gave written informed consent according to institutional policy before entering the study. Patients presenting with brain metastases, leptomeningeal disease, or bone marrow involvement, as well as patients previousl
Benchmarking scientific performance by decomposing leadership of Cuban and Latin American institutions in Public Health
This is a post-peer-review, pre-copyedit version of an article published in Scientometrics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11192-015-1831-z”.Comparative benchmarking with bibliometric indicators can be an aid in decision-making with regard to research management. This study aims to characterize scientific performance in a domain (Public Health) by the institutions of a country (Cuba), taking as reference world output and regional output (other Latin American centers) during the period 2003–2012. A new approach is used here to assess to what extent the leadership of a specific institution can change its citation impact. Cuba was found to have a high level of specialization and scientific leadership that does not match the low international visibility of Cuban institutions. This leading output appears mainly in non-collaborative papers, in national journals; publication in English is very scarce and the rate of international collaboration is very low. The Instituto de Medicina Tropical Pedro Kouri stands out, alone, as a national reference. Meanwhile, at the regional level, Latin American institutions deserving mention for their high autonomy in normalized citation would include Universidad de Buenos Aires (ARG), Universidade Federal de Pelotas (BRA), Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas (ARG), Instituto Oswaldo Cruz (BRA) and the Centro de Pesquisas Rene Rachou (BRA). We identify a crucial aspect that can give rise to misinterpretations of data: a high share of leadership cannot be considered positive for institutions when it is mainly associated with a high proportion of non-collaborative papers and a very low level of performance. Because leadership might be
questionable in some cases, we propose future studies to ensure a better interpretation of findings.This work was made possible through financing by the scholarship funds for international mobility between Andalusian and IberoAmerican Universities and the SCImago GroupPeer reviewe
How university’s activities support the development of students’ entrepreneurial abilities: case of Slovenia and Croatia
The paper reports how the offered university activities support the development of students’ entrepreneurship abilities. Data were collected from 306 students from Slovenian and 609 students from Croatian universities. The study reduces the gap between theoretical researches about the academic entrepreneurship education and individual empirical studies about the student’s estimation of the offered academic activities for development of their entrepreneurial abilities. The empirical research revealed differences in Slovenian and Croatian students’ perception about (a) needed academic activities and (b) significance of the offered university activities, for the development of their entrepreneurial abilities. Additionally, the results reveal that the impact of students’ gender and study level on their perception about the importance of the offered academic activities is not significant for most of the considered activities. The main practical implication is focused on further improvement of universities’ entrepreneurship education programs through selection and utilization of activities which can fill in the recognized gaps between the students’ needed and the offered academic activities for the development of students’ entrepreneurial abilities
Webometrics benefitting from web mining? An investigation of methods and applications of two research fields
Webometrics and web mining are two fields where research is focused on quantitative analyses of the web. This literature review outlines definitions of the fields, and then focuses on their methods and applications. It also discusses the potential of closer contact and collaboration between them. A key difference between the fields is that webometrics has focused on exploratory studies, whereas web mining has been dominated by studies focusing on development of methods and algorithms. Differences in type of data can also be seen, with webometrics more focused on analyses of the structure of the web and web mining more focused on web content and usage, even though both fields have been embracing the possibilities of user generated content. It is concluded that research problems where big data is needed can benefit from collaboration between webometricians, with their tradition of exploratory studies, and web miners, with their tradition of developing methods and algorithms
- …