1,706 research outputs found

    Fractional time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower

    Full text link
    Continuous time random walk (CTRW) subdiffusion along with the associated fractional Fokker-Planck equation (FFPE) is traditionally based on the premise of random clock with divergent mean period. This work considers an alternative CTRW and FFPE description which is featured by finite mean residence times (MRTs) in any spatial domain of finite size. Transient subdiffusive transport can occur on a very large time scale τc\tau_c which can greatly exceed mean residence time in any trap, τc\tau_c\gg , and even not being related to it. Asymptotically, on a macroscale transport becomes normal for tτct\gg\tau_c. However, mesoscopic transport is anomalous. Differently from viscoelastic subdiffusion no long-range anti-correlations among position increments are required. Moreover, our study makes it obvious that the transient subdiffusion and transport are faster than one expects from their normal asymptotic limit on a macroscale. This observation has profound implications for anomalous mesoscopic transport processes in biological cells because of macroscopic viscosity of cytoplasm is finite

    Distinguishing fractional and white noise in one and two dimensions

    Full text link
    We discuss the link between uncorrelated noise and Hurst exponent for one and two-dimensional interfaces. We show that long range correlations cannot be observed using one-dimensional cuts through two-dimensional self-affine surfaces whose height distributions are characterized by a Hurst exponent lower than -1/2. In this domain, fractional and white noise are not distinguishable. A method analysing the correlations in two dimensions is necessary. For Hurst exponents larger than -1/2, a crossover regime leads to a systematic over estimate of the Hurst exponent.Comment: 3 pages RevTeX, 4 Postscript figure

    Self-consistent fragmented excited states of trapped condensates

    Full text link
    Self-consistent excited states of condensates are solutions of the Gross-Pitaevskii (GP) equation and have been amply discussed in the literature and related to experiments. By introducing a more general mean-field which includes the GP one as a special case, we find a new class of self-consistent excited states. In these states macroscopic numbers of bosons reside in different one-particle functions, i.e., the states are fragmented. Still, a single chemical potential is associated with the condensate. A numerical example is presented, illustrating that the energies of the new, fragmented, states are much lower than those of the GP excited states, and that they are stable to variations of the particle number and shape of the trap potential.Comment: (11 pages 2 figures, submitted to PRL

    Rotation of an atomic Bose-Einstein condensate with and without a quantized vortex

    Full text link
    We theoretically examine the rotation of an atomic Bose-Einstein condensate in an elliptical trap, both in the absence and presence of a quantized vortex. Two methods of introducing the rotating potential are considered - adiabatically increasing the rotation frequency at fixed ellipticity, and adiabatically increasing the trap ellipticity at fixed rotation frequency. Extensive simulations of the Gross-Pitaevskii equation are employed to map out the points where the condensate becomes unstable and ultimately forms a vortex lattice. We highlight the key features of having a quantized vortex in the initial condensate. In particular, we find that the presence of the vortex causes the instabilities to shift to lower or higher rotation frequencies, depending on the direction of the vortex relative to the trap rotation.Comment: 15 pages, 8 figure

    Double-Slit Interferometry with a Bose-Einstein Condensate

    Full text link
    A Bose-Einstein "double-slit" interferometer has been recently realized experimentally by (Y. Shin et. al., Phys. Rev. Lett. 92 50405 (2004)). We analyze the interferometric steps by solving numerically the time-dependent Gross-Pitaevski equation in three-dimensional space. We focus on the adiabaticity time scales of the problem and on the creation of spurious collective excitations as a possible source of the strong dephasing observed experimentally. The role of quantum fluctuations is discussed.Comment: 4 pages, 3 figure

    Scale-free network topology and multifractality in weighted planar stochastic lattice

    Full text link
    We propose a weighted planar stochastic lattice (WPSL) formed by the random sequential partition of a plane into contiguous and non-overlapping blocks and find that it evolves following several non-trivial conservation laws, namely iNxin1yi4/n1\sum_i^N x_i^{n-1} y_i^{4/n-1} is independent of time  n\forall \ n, where xix_i and yiy_i are the length and width of the iith block. Its dual on the other hand, obtained by replacing each block with a node at its center and common border between blocks with an edge joining the two vertices, emerges as a network with a power-law degree distribution P(k)kγP(k)\sim k^{-\gamma} where γ=5.66\gamma=5.66 revealing scale-free coordination number disorder since P(k)P(k) also describes the fraction of blocks having kk neighbours. To quantify the size disorder, we show that if the iith block is populated with pixi3p_i\sim x_i^3 then its distribution in the WPSL exhibits multifractality.Comment: 7 pages, 8 figures, To appear in New Journal of Physics (NJP

    Critical scaling in standard biased random walks

    Full text link
    The spatial coverage produced by a single discrete-time random walk, with asymmetric jump probability p1/2p\neq 1/2 and non-uniform steps, moving on an infinite one-dimensional lattice is investigated. Analytical calculations are complemented with Monte Carlo simulations. We show that, for appropriate step sizes, the model displays a critical phenomenon, at p=pcp=p_c. Its scaling properties as well as the main features of the fragmented coverage occurring in the vicinity of the critical point are shown. In particular, in the limit ppcp\to p_c, the distribution of fragment lengths is scale-free, with nontrivial exponents. Moreover, the spatial distribution of cracks (unvisited sites) defines a fractal set over the spanned interval. Thus, from the perspective of the covered territory, a very rich critical phenomenology is revealed in a simple one-dimensional standard model.Comment: 4 pages, 4 figure

    Twin boundaries in d-wave superconductors

    Full text link
    Twin boundaries in orthorhombic d-wave superconductors are investigated numerically using the Bogoliubov-deGennes formalism within the context of an extended Hubbard model. The twin boundaries are represented by tetragonal regions of variable width, with a reduced chemical potential. For sufficiently large twin boundary width and change in chemical potential, an induced s-wave component may break time-reversal symmetry at a low temperature. This temperature, and the magnitude of the complex component, are found to depend strongly on electron density. The results are compared with recent tunneling measurements.Comment: ReVTeX, 4 pages, 4 postscript figure

    Effective Viscosity of Dilute Bacterial Suspensions: A Two-Dimensional Model

    Full text link
    Suspensions of self-propelled particles are studied in the framework of two-dimensional (2D) Stokesean hydrodynamics. A formula is obtained for the effective viscosity of such suspensions in the limit of small concentrations. This formula includes the two terms that are found in the 2D version of Einstein's classical result for passive suspensions. To this, the main result of the paper is added, an additional term due to self-propulsion which depends on the physical and geometric properties of the active suspension. This term explains the experimental observation of a decrease in effective viscosity in active suspensions.Comment: 15 pages, 3 figures, submitted to Physical Biolog

    Adsorption of colloidal particles in the presence of external field

    Get PDF
    We present a new class of sequential adsorption models in which the adsorbing particles reach the surface following an inclined direction (shadow models). Capillary electrophoresis, adsorption in the presence of a shear or on an inclined substrate are physical manifestations of these models. Numerical simulations are carried out to show how the new adsorption mechanisms are responsible for the formation of more ordered adsorbed layers and have important implications in the kinetics, in particular modifying the jamming limit.Comment: LaTex file, 3 figures available upon request, to appear in Phys.Rev.Let
    corecore