Abstract

Twin boundaries in orthorhombic d-wave superconductors are investigated numerically using the Bogoliubov-deGennes formalism within the context of an extended Hubbard model. The twin boundaries are represented by tetragonal regions of variable width, with a reduced chemical potential. For sufficiently large twin boundary width and change in chemical potential, an induced s-wave component may break time-reversal symmetry at a low temperature. This temperature, and the magnitude of the complex component, are found to depend strongly on electron density. The results are compared with recent tunneling measurements.Comment: ReVTeX, 4 pages, 4 postscript figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019