129 research outputs found

    Polymer quantization, singularity resolution and the 1/r^2 potential

    Full text link
    We present a polymer quantization of the -lambda/r^2 potential on the positive real line and compute numerically the bound state eigenenergies in terms of the dimensionless coupling constant lambda. The singularity at the origin is handled in two ways: first, by regularizing the potential and adopting either symmetric or antisymmetric boundary conditions; second, by keeping the potential unregularized but allowing the singularity to be balanced by an antisymmetric boundary condition. The results are compared to the semiclassical limit of the polymer theory and to the conventional Schrodinger quantization on L_2(R_+). The various quantization schemes are in excellent agreement for the highly excited states but differ for the low-lying states, and the polymer spectrum is bounded below even when the Schrodinger spectrum is not. We find as expected that for the antisymmetric boundary condition the regularization of the potential is redundant: the polymer quantum theory is well defined even with the unregularized potential and the regularization of the potential does not significantly affect the spectrum.Comment: 21 pages, LaTeX including 7 figures. v2: analytic bounds improved; references adde

    Novel Anticancer Drug 5H-pyro[3,2-a] Phenoxazin-5-one (PPH) Regulates lncRNA HOTAIR and HOXC genes in Human MCF-7 Cells

    Get PDF
    Breast cancer in women is the second most commonly cancer, after skin cancer. The percentage of mortalityrisk for breast cancer is 1 in 37 women (2.7%), which makes breast cancer represent the second cause of cancerdeath in women. Recently, new research based on previously published work in systemic chemotherapy andendocrine therapy field, have improved the incidence rates. The quinonic nucleus is common to many naturaland synthetic products associated with anticancer and antibacterial activities, these compounds are typicallyDNA-intercalating agents. The Class I Homeobox genes (HOX in human and hox in mouse) control embryonicdevelopment and specific determination of positional identity anteroposterior axis of the human body. The HOXgenes, are 39 transcription factors related to morphological, physiological disease. It has been demonstratedthat any deregulation into the network is able to induce neoplastic transformation. Particularly, HOXC locuscollaborating with lncRNA HOTAIR play a key role in breast cancer. In this study, our group evaluated the chemical and metabolic stability of new anticancer molecule 5H-pyro[3,2-a] phenoxazin-5-one (PPH). In a recent paper, we have already demonstrated that a new and potent anticancersynthetic iminoquinone, the 5H-pyrido[3,2-a]phenoxazin-5-one (PPH), is able to inhibit a large number oflymphoblastoid and solid-tumor-derived cells at submicromolar concentrations. Based on our previous research, we decided to analyze the cytotoxic effect and capability of PPH to control thelncRNA HOTAIR and HOXC locus gene expression in human breast cancer cells MCF-7, in order to demonstrateits role like potential new breast cancer antitumor drug

    Novel anticancer drug 5h-pyro[3,2-a] phenoxazin-5-one (PPH) regulates lncRNA HOTAIR and HOXC genes in human MCF-7 cells

    Get PDF
    Breast cancer in women is the second most commonly cancer, after skin cancer. The percentage of mortality risk for breast cancer is 1 in 37 women (2.7%), which makes breast cancer represent the second cause of cancer death in women. Recently, new research based on previously published work in systemic chemotherapy and endocrine therapy field, have improved the incidence rates. The quinonic nucleus is common to many natural and synthetic products associated with anticancer and antibacterial activities, these compounds are typically DNA-intercalating agents. The Class I Homeobox genes (HOX in human and hox in mouse) control embryonic development and specific determination of positional identity anteroposterior axis of the human body. The HOX genes, are 39 transcription factors related to morphological, physiological disease. It has been demonstrated that any deregulation into the network is able to induce neoplastic transformation. Particularly, HOXC locus collaborating with lncRNA HOTAIR play a key role in breast cancer. In this study, our group evaluated the chemical and metabolic stability of new anticancer molecule 5H-pyro[3,2-a] phenoxazin-5-one (PPH). In a recent paper, we have already demonstrated that a new and potent anticancer synthetic iminoquinone, the 5H-pyrido[3,2-a]phenoxazin-5-one (PPH), is able to inhibit a large number of lymphoblastoid and solid-tumor-derived cells at submicromolar concentrations. Based on our previous research, we decided to analyze the cytotoxic effect and capability of PPH to control the lncRNA HOTAIR and HOXC locus gene expression in human breast cancer cells MCF-7, in order to demonstrate its role like potential new breast cancer antitumor drug

    Revisiting the quantum scalar field in spherically symmetric quantum gravity

    Full text link
    We extend previous results in spherically symmetric gravitational systems coupled with a massless scalar field within the loop quantum gravity framework. As starting point, we take the Schwarzschild spacetime. The results presented here rely on the uniform discretization method. We are able to minimize the associated discrete master constraint using a variational method. The trial state for the vacuum consists of a direct product of a Fock vacuum for the matter part and a Gaussian centered around the classical Schwarzschild solution. This paper follows the line of research presented by Gambini, Pullin and Rastgoo and a comparison between their result and the one given in this work is made.Comment: 16 page

    Loop quantization of spherically symmetric midi-superspaces

    Get PDF
    We quantize the exterior of spherically symmetric vacuum space-times using a midi-superspace reduction within the Ashtekar new variables. Through a partial gauge fixing we eliminate the diffeomorphism constraint and are left with a Hamiltonian constraint that is first class. We complete the quantization in the loop representation. We also use the model to discuss the issues that will arise in more general contexts in the ``uniform discretization'' approach to the dynamics.Comment: 18 pages, RevTex, no figures, some typos corrected, published version, for some reason a series of figures were incorrectly added to the previous versio

    Field homogeneity in OSCAR-MEE

    Get PDF
    Soil properties at the beginning of the MEE (Multi Environment Experiments) were statistically analyzed in order to verify the field homogeneity. The initial soil properties represent the starting point to interpret the effect of CC and LM on soil fertility during crop cycle.Soil properties of the fields were quite homogeneous at the beginning of crop cycles (first and second). The soil properties of the experimental fields in the selected areas showed a wide variety of pedons to be used for the comparison of CC and LM effect in different climate zones. Soils from the Northern European sites are more acid and richer of nutrients and organic matter with respect to the soils in Southern sites

    Characterization of New TRPM8 Modulators in Pain Perception

    Get PDF
    Background: Transient Receptor Potential Melastatin-8 (TRPM8) is a non-selective cation channel activated by cold temperature and by cooling agents. Several studies have proved that this channel is involved in pain perception. Although some studies indicate that TRPM8 inhibition is necessary to reduce acute and chronic pain, it is also reported that TRPM8 activation produces analgesia. These conflicting results could be explained by extracellular Ca2+-dependent desensitization that is induced by an excessive activation. Likely, this effect is due to phosphatidylinositol 4,5-bisphosphate (PIP2) depletion that leads to modification of TRPM8 channel activity, shifting voltage dependence towards more positive potentials. This phenomenon needs further evaluation and confirmation that would allow us to understand better the role of this channel and to develop new therapeutic strategies for controlling pain. Experimental approach: To understand the role of TRPM8 in pain perception, we tested two specific TRPM8-modulating compounds, an antagonist (IGM-18) and an agonist (IGM-5), in either acute or chronic animal pain models using male Sprague-Dawley rats or CD1 mice, after systemic or topical routes of administration. Results: IGM-18 and IGM-5 were fully characterized in vivo. The wet-dog shake test and the body temperature measurements highlighted the antagonist activity of IGM-18 on TRPM8 channels. Moreover, IGM-18 exerted an analgesic effect on formalin-induced orofacial pain and chronic constriction injury-induced neuropathic pain, demonstrating the involvement of TRPM8 channels in these two pain models. Finally, the results were consistent with TRPM8 downregulation by agonist IGM-5, due to its excessive activation. Conclusions: TRPM8 channels are strongly involved in pain modulation, and their selective antagonist is able to reduce both acute and chronic pain

    Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor

    Get PDF
    Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM), p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2) oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ) produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients

    Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory

    Full text link
    A covariant spin-foam formulation of quantum gravity has been recently developed, characterized by a kinematics which appears to match well the one of canonical loop quantum gravity. In this paper we reconsider the implementation of the constraints that defines the model. We define in a simple way the boundary Hilbert space of the theory, introducing a slight modification of the embedding of the SU(2) representations into the SL(2,C) ones. We then show directly that all constraints vanish on this space in a weak sense. The vanishing is exact (and not just in the large quantum number limit.) We also generalize the definition of the volume operator in the spinfoam model to the Lorentzian signature, and show that it matches the one of loop quantum gravity, as does in the Euclidean case.Comment: 11 page

    Quantization of Midisuperspace Models

    Get PDF
    We give a comprehensive review of the quantization of midisuperspace models. Though the main focus of the paper is on quantum aspects, we also provide an introduction to several classical points related to the definition of these models. We cover some important issues, in particular, the use of the principle of symmetric criticality as a very useful tool to obtain the required Hamiltonian formulations. Two main types of reductions are discussed: those involving metrics with two Killing vector fields and spherically symmetric models. We also review the more general models obtained by coupling matter fields to these systems. Throughout the paper we give separate discussions for standard quantizations using geometrodynamical variables and those relying on loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit
    • …
    corecore