40 research outputs found

    Drosophila embryos as model systems for monitoring bacterial infection in real time.

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tDrosophila embryos are well studied developmental microcosms that have been used extensively as models for early development and more recently wound repair. Here we extend this work by looking at embryos as model systems for following bacterial infection in real time. We examine the behaviour of injected pathogenic (Photorhabdus asymbiotica) and non-pathogenic (Escherichia coli) bacteria and their interaction with embryonic hemocytes using time-lapse confocal microscopy. We find that embryonic hemocytes both recognise and phagocytose injected wild type, non-pathogenic E. coli in a Dscam independent manner, proving that embryonic hemocytes are phagocytically competent. In contrast, injection of bacterial cells of the insect pathogen Photorhabdus leads to a rapid 'freezing' phenotype of the hemocytes associated with significant rearrangement of the actin cytoskeleton. This freezing phenotype can be phenocopied by either injection of the purified insecticidal toxin Makes Caterpillars Floppy 1 (Mcf1) or by recombinant E. coli expressing the mcf1 gene. Mcf1 mediated hemocyte freezing is shibire dependent, suggesting that endocytosis is required for Mcf1 toxicity and can be modulated by dominant negative or constitutively active Rac expression, suggesting early and unexpected effects of Mcf1 on the actin cytoskeleton. Together these data show how Drosophila embryos can be used to track bacterial infection in real time and how mutant analysis can be used to genetically dissect the effects of specific bacterial virulence factors.Wellcome TrustBBSR

    Photorhabdus adhesion modification protein (Pam) binds extracellular polysaccharide and alters bacterial attachment.

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Photorhabdus are Gram-negative nematode-symbiotic and insect-pathogenic bacteria. The species Photorhabdus asymbiotica is able to infect humans as well as insects. We investigated the secreted proteome of a clinical isolate of P. asymbiotica at different temperatures in order to identify proteins relevant to the infection of the two different hosts. RESULTS: A comparison of the proteins secreted by a clinical isolate of P. asymbiotica at simulated insect (28 degrees C) and human (37 degrees C) temperatures led to the identification of a small and highly abundant protein, designated Pam, that is only secreted at the lower temperature. The pam gene is present in all Photorhabdus strains tested and shows a high level of conservation across the whole genus, suggesting it is both ancestral to the genus and probably important to the biology of the bacterium. The Pam protein shows limited sequence similarity to the 13.6 kDa component of a binary toxin of Bacillus thuringiensis. Nevertheless, injection or feeding of heterologously produced Pam showed no insecticidal activity to either Galleria mellonella or Manduca sexta larvae. In bacterial colonies, Pam is associated with an extracellular polysaccharide (EPS)-like matrix, and modifies the ability of wild-type cells to attach to an artificial surface. Interestingly, Surface Plasmon Resonance (SPR) binding studies revealed that the Pam protein itself has adhesive properties. Although Pam is produced throughout insect infection, genetic knockout does not affect either insect virulence or the ability of P. luminescens to form a symbiotic association with its host nematode, Heterorhabditis bacteriophora. CONCLUSIONS: We studied a highly abundant protein, Pam, which is secreted in a temperature-dependent manner in P. asymbiotica. Our findings indicate that Pam plays an important role in enhancing surface attachment in insect blood. Its association with exopolysaccharide suggests it may exert its effect through mediation of EPS properties. Despite its abundance and conservation in the genus, we find no evidence for a role of Pam in either virulence or symbiosis.BBSRCWellcome TrustEMBEK

    Population Genetics of Duplicated Alternatively Spliced Exons of the Dscam Gene in Daphnia and Drosophila

    Get PDF
    In insects and crustaceans, the Down syndrome cell adhesion molecule (Dscam) occurs in many different isoforms. These are produced by mutually exclusive alternative splicing of dozens of tandem duplicated exons coding for parts or whole immunoglobulin (Ig) domains of the Dscam protein. This diversity plays a role in the development of the nervous system and also in the immune system. Structural analysis of the protein suggested candidate epitopes where binding to pathogens could occur. These epitopes are coded by regions of the duplicated exons and are therefore diverse within individuals. Here we apply molecular population genetics and molecular evolution analyses using Daphnia magna and several Drosophila species to investigate the potential role of natural selection in the divergence between orthologs of these duplicated exons among species, as well as between paralogous exons within species. We found no evidence for a role of positive selection in the divergence of these paralogous exons. However, the power of this test was low, and the fact that no signs of gene conversion between paralogous exons were found suggests that paralog diversity may nonetheless be maintained by selection. The analysis of orthologous exons in Drosophila and in Daphnia revealed an excess of non-synonymous polymorphisms in the epitopes putatively involved in pathogen binding. This may be a sign of balancing selection. Indeed, in Dr. melanogaster the same derived non-synonymous alleles segregate in several populations around the world. Yet other hallmarks of balancing selection were not found. Hence, we cannot rule out that the excess of non-synonymous polymorphisms is caused by segregating slightly deleterious alleles, thus potentially indicating reduced selective constraints in the putative pathogen binding epitopes of Dscam

    Global Effects of Catecholamines on Actinobacillus pleuropneumoniae Gene Expression

    Get PDF
    Bacteria can use mammalian hormones to modulate pathogenic processes that play essential roles in disease development. Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry globally. Stress is known to contribute to the outcome of A. pleuropneumoniae infection. To test whether A. pleuropneumoniae could respond to stress hormone catecholamines, gene expression profiles after epinephrine (Epi) and norepinephrine (NE) treatment were compared with those from untreated bacteria. The microarray results showed that 158 and 105 genes were differentially expressed in the presence of Epi and NE, respectively. These genes were assigned to various functional categories including many virulence factors. Only 18 genes were regulated by both hormones. These genes included apxIA (the ApxI toxin structural gene), pgaB (involved in biofilm formation), APL_0443 (an autotransporter adhesin) and genes encoding potential hormone receptors such as tyrP2, the ygiY-ygiX (qseC-qseB) operon and narQ-narP (involved in nitrate metabolism). Further investigations demonstrated that cytotoxic activity was enhanced by Epi but repressed by NE in accordance with apxIA gene expression changes. Biofilm formation was not affected by either of the two hormones despite pgaB expression being affected. Adhesion to host cells was induced by NE but not by Epi, suggesting that the hormones affect other putative adhesins in addition to APL_0443. This study revealed that A. pleuropneumoniae gene expression, including those encoding virulence factors, was altered in response to both catecholamines. The differential regulation of A. pleuropneumoniae gene expression by the two hormones suggests that this pathogen may have multiple responsive systems for the two catecholamines

    Modulation of host cell processes by T3SS effectors

    Get PDF
    Two of the enteric Escherichia coli pathotypes-enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC)-have a conserved type 3 secretion system which is essential for virulence. The T3SS is used to translocate between 25 and 50 bacterial proteins directly into the host cytosol where they manipulate a variety of host cell processes to establish a successful infection. In this chapter, we discuss effectors from EPEC/EHEC in the context of the host proteins and processes that they target-the actin cytoskeleton, small guanosine triphosphatases and innate immune signalling pathways that regulate inflammation and cell death. Many of these translocated proteins have been extensively characterised, which has helped obtain insights into the mechanisms of pathogenesis of these bacteria and also understand the host pathways they target in more detail. With increasing knowledge of the positive and negative regulation of host signalling pathways by different effectors, a future challenge is to investigate how the specific effector repertoire of each strain cooperates over the course of an infection

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Identification and characterization of EspK, a type III secreted effector protein of enterohaemorrhagic Escherichia coli O157:H7.

    No full text
    Enterohaemorrhagic Escherichia coli (EHEC) causes bloody diarrhoea in humans and deploys a type III secretion system (T3SS) encoded by the locus of enterocyte effacement to elicit the formation of attaching and effacing (AE) lesions on intestinal epithelia. Here, we report the identification of a new secreted substrate of this system, z1829, which is encoded by cryptic prophage CP-933N. Elevated secretion of a beta-lactamase-z1829 fusion protein was detected upon mutation of sepD in EHEC O157:H7 and the fusion protein was translocated into infected epithelial cells in a T3SS-dependent manner; accordingly, we named the protein EspK. In common with the related Salmonella enterica type III secreted effector GogB, we observed that EspK localized to the cytoplasm when transiently expressed in COS-7 cells using EspK-specific antiserum. Inactivation of espK did not impair adherence or actin nucleation during infection of HeLa cells but affected persistence of EHEC O157:H7 in the intestines of orally inoculated calves. Inactivation of an orthologue of espK in the murine AE pathogen Citrobacter rodentium did not impair intestinal colonization in mice
    corecore