156 research outputs found

    Generalized Geologic Map for Land-Use Planning: Franklin County, Kentucky

    Get PDF
    This map is not intended to be used for selecting individual sites. Its purpose is to inform land-use planners, government officials, and the public in a general way about geologic bedrock conditions that affect the selection of sites for various purposes. The properties of thick soils may supercede those of the underlying bedrock and should be considered on a site-to-site basis. At any site, it is important to understand the characteristics of both the soils and the underlying rock

    Robot Guided ‘Pen Skill’ Training in Children with Motor Difficulties

    Get PDF
    Motor deficits are linked to a range of negative physical, social and academic consequences. Haptic robotic interventions, based on the principles of sensorimotor learning, have been shown previously to help children with motor problems learn new movements. We therefore examined whether the training benefits of a robotic system would generalise to a standardised test of ‘pen-skills’, assessed using objective kinematic measures [via the Clinical Kinematic Assessment Tool, CKAT]. A counterbalanced, cross-over design was used in a group of 51 children (37 male, aged 5-11 years) with manual control difficulties. Improved performance on a novel task using the robotic device could be attributed to the intervention but there was no evidence of generalisation to any of the CKAT tasks. The robotic system appears to have the potential to support motor learning, with the technology affording numerous advantages. However, the training regime may need to target particular manual skills (e.g. letter formation) in order to obtain clinically significant improvements in specific skills such as handwriting

    Alpha-COPI Coatomer Protein Is Required for Rough Endoplasmic Reticulum Whorl Formation in Mosquito Midgut Epithelial Cells

    Get PDF
    One of the early events in midgut epithelial cells of Aedes aegypti mosquitoes is the dynamic reorganization of rough endoplasmic reticulum (RER) whorl structures coincident with the onset of blood meal digestion. Based on our previous studies showing that feeding on an amino acid meal induces TOR signaling in Ae. aegypti, we used proteomics and RNAi to functionally identify midgut epithelial cell proteins that contribute to RER whorl formation.Adult female Ae. aegypti mosquitoes were maintained on sugar alone (unfed), or fed an amino acid meal, and then midgut epithelial cells were analyzed by electron microscopy and protein biochemistry. The size and number of RER whorls in midgut epithelial cells were found to decrease significantly after feeding, and several KDEL-containing proteins were shown to have altered expression levels. LC-MS/MS mass spectrometry was used to analyze midgut microsomal proteins isolated from unfed and amino acid fed mosquitoes, and of the 127 proteins identified, 8 were chosen as candidate whorl forming proteins. Three candidate proteins were COPI coatomer subunits (alpha, beta, beta'), all of which appeared to be present at higher levels in microsomal fractions from unfed mosquitoes. Using RNAi to knockdown alpha-COPI expression, electron microscopy revealed that both the size and number of RER whorls were dramatically reduced in unfed mosquitoes, and moreover, that extended regions of swollen RER were prevalent in fed mosquitoes. Lastly, while a deficiency in alpha-COPI had no effect on early trypsin protein synthesis or secretion 3 hr post blood meal (PBM), expression of late phase proteases at 24 hr PBM was completely blocked.alpha-COPI was found to be required for the formation of RER whorls in midgut epithelial cells of unfed Aa. aegypti mosquitoes, as well as for the expression of late phase midgut proteases

    Near-field Electrical Detection of Optical Plasmons and Single Plasmon Sources

    Get PDF
    Photonic circuits can be much faster than their electronic counterparts, but they are difficult to miniaturize below the optical wavelength scale. Nanoscale photonic circuits based on surface plasmon polaritons (SPs) are a promising solution to this problem because they can localize light below the diffraction limit. However, there is a general tradeoff between the localization of an SP and the efficiency with which it can be detected with conventional far-field optics. Here we describe a new all-electrical SP detection technique based on the near-field coupling between guided plasmons and a nanowire field-effect transistor. We use the technique to electrically detect the plasmon emission from an individual colloidal quantum dot coupled to an SP waveguide. Our detectors are both nanoscale and highly efficient (0.1 electrons/plasmon), and a plasmonic gating effect can be used to amplify the signal even higher (up to 50 electrons/plasmon). These results enable new on-chip optical sensing applications and are a key step towards "dark" optoplasmonic nanocircuits in which SPs can be generated, manipulated, and detected without involving far-field radiation.Comment: manuscript followed by supplementary informatio

    CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions

    Get PDF
    CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47(−/−) Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47(−/−) Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)–activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α–activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn(2+) or Mg(2+)/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration

    Formation and Toxicity of Soluble Polyglutamine Oligomers in Living Cells

    Get PDF
    Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt.When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Htt(ex1)) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHtt(ex1) variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHtt(ex1) formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHtt(ex1) split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHtt(ex1) to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHtt(ex1). A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHtt(ex1) oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs.Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins

    Development of Cysteine-Free Fluorescent Proteins for the Oxidative Environment

    Get PDF
    Molecular imaging employing fluorescent proteins has been widely used to highlight specific reactions or processes in various fields of the life sciences. Despite extensive improvements of the fluorescent tag, this technology is still limited in the study of molecular events in the extracellular milieu. This is partly due to the presence of cysteine in the fluorescent proteins. These proteins almost cotranslationally form disulfide bonded oligomers when expressed in the endoplasmic reticulum (ER). Although single molecule photobleaching analysis showed that these oligomers were not fluorescent, the fluorescent monomer form often showed aberrant behavior in folding and motion, particularly when fused to cysteine-containing cargo. Therefore we investigated whether it was possible to eliminate the cysteine without losing the brightness. By site-saturated mutagenesis, we found that the cysteine residues in fluorescent proteins could be replaced with specific alternatives while still retaining their brightness. cf(cysteine-free)SGFP2 showed significantly reduced restriction of free diffusion in the ER and marked improvement of maturation when fused to the prion protein. We further applied this approach to TagRFP family proteins and found a set of mutations that obtains the same level of brightness as the cysteine-containing proteins. The approach used in this study to generate new cysteine-free fluorescent tags should expand the application of molecular imaging to the extracellular milieu and facilitate its usage in medicine and biotechnology

    Actin-interacting and flagellar proteins in Leishmania spp.: Bioinformatics predictions to functional assignments in phagosome formation

    Get PDF
    Several motile processes are responsible for the movement of proteins into and within the flagellar membrane, but little is known about the process by which specific proteins (either actin-associated or not) are targeted to protozoan flagellar membranes. Actin is a major cytoskeleton protein, while polymerization and depolymerization of parasite actin and actin-interacting proteins (AIPs) during both processes of motility and host cell entry might be key events for successful infection. For a better understanding the eukaryotic flagellar dynamics, we have surveyed genomes, transcriptomes and proteomes of pathogenic Leishmania spp. to identify pertinent genes/proteins and to build in silico models to properly address their putative roles in trypanosomatid virulence. In a search for AIPs involved in flagellar activities, we applied computational biology and proteomic tools to infer from the biological meaning of coronins and Arp2/3, two important elements in phagosome formation after parasite phagocytosis by macrophages. Results presented here provide the first report of Leishmania coronin and Arp2/3 as flagellar proteins that also might be involved in phagosome formation through actin polymerization within the flagellar environment. This is an issue worthy of further in vitro examination that remains now as a direct, positive bioinformatics-derived inference to be presented
    corecore