532 research outputs found

    Geographic range size and evolutionary age in birds

    Get PDF
    Together with patterns of speciation and extinction, post-speciation transformations in the range sizes of individual species determine the form of contemporary species-range-size distributions. However, the methodological problems associated with tracking the dynamics of a species' range size over evolutionary time have precluded direct study of such range-size transformations, although indirect evidence has led to several models being proposed describing the form that they might take. Here, we use independently derived molecular data to estimate ages of species in six monophyletic groups of birds, and examine the relationship between species age and global geographic range size. We present strong evidence that avian range sizes are not static over evolutionary time. In addition, it seems that, with the regular exception of certain taxa (for example island endemics and some threatened species), range-size transformations are non-random in birds. In general, range sizes appear to expand relatively rapidly post speciation; subsequently, and perhaps more gradually, they then decline as species age. We discuss these results with reference to the various models of range-size dynamics that have been proposed

    Application of In Situ Fiberization for fabrication of improved strain isolation pads and graphite epoxy composites

    Get PDF
    The feasibility of applying the in situ fiberization process to the fabrication of strain isolation pads (SIP) for the Space Shuttle and to the fabrication of graphite-epoxy composites was evaluated. The ISF process involves the formation of interconnected polymer fiber networks by agitation of dilute polymer solutions under controlled conditions. High temperature polymers suitable for SIP use were fiberized and a successful fiberization of polychloro trifluoroethylene, a relatively high melting polymer, was achieved. Attempts to fiberize polymers with greater thermal stability were unsuccessful, apparently due to characteristics caused by the presence of aromaticity in the backbone of such materials. Graphite-epoxy composites were fabricated by interconnecting two dimensional arrays of graphite fiber with polypropylene IS fibers with subsequent epoxy resin impregnation. Mechanical property tests were performed on laminated panels of this material to evaluate intralaminar and interlaminar shear strength, and thus fracture toughness. Test results were generally unpromising

    Male-biased gene flow across an avian hybrid zone: evidence from mitochondrial and microsatellite DNA

    Get PDF
    Mating pattern and gene flow were studied in the contact zone between two morphologically very similar Chiffchaff taxa (Phylloscopus collybita, P. brehmii) in SW France and northern Spain. Mating was assortative in brehmii, but not in collybita. Mixed matings were strongly asymmetric (excess of callybita male x brehmii female pairs), but did produce viable offspring in some cases. Sequence divergence of the mitochondrial cytochrome b gene was 4.6%; Haplotypes segregated significantly with phenotype (only five 'mismatches' among 94 individuals), demonstrating that mitochondrial gene flow was very restricted. The estimated proportion of F-1 hybrids in the reproductive population was significantly lower than expected under a closed population model, indicating strong selection against hybrids. Genetic typing of 101 individuals at four microsatellite loci also showed significant population differentiation, but nuclear gene flow was estimated to be 75 times higher than mitochondrial gene flow. This strong discrepancy is probably due to unisexual hybrid sterility (Haldane's rule). Thus, there is a strong, but incomplete, reproductive barrier between these taxa

    Temperature dependence of the collective mode and its influence on the band splitting in bilayer cuprates

    Full text link
    The recently observed bilayer splitting in high-Tc_c cuprates is analyzed within a model where the charge carriers are coupled to a phenomenological bosonic spectrum which interpolates between the marginal Fermi liquid structure and collective mode type behavior as a function of temperature. We argue that the origin of the collective mode is probably associated with dynamic incommensurate charge density waves. Moreover it is shown that the resulting temperature dependence of the self-energy Σ\Sigma is in good agreement with Σ\Sigma as extracted from angle-resolved photoemission data.Comment: 6 pages, 4 figures, accepted for PR

    Improved Techniques for the Conditional Generative Augmentation of Clinical Audio Data

    Full text link
    Data augmentation is a valuable tool for the design of deep learning systems to overcome data limitations and stabilize the training process. Especially in the medical domain, where the collection of large-scale data sets is challenging and expensive due to limited access to patient data, relevant environments, as well as strict regulations, community-curated large-scale public datasets, pretrained models, and advanced data augmentation methods are the main factors for developing reliable systems to improve patient care. However, for the development of medical acoustic sensing systems, an emerging field of research, the community lacks large-scale publicly available data sets and pretrained models. To address the problem of limited data, we propose a conditional generative adversarial neural network-based augmentation method which is able to synthesize mel spectrograms from a learned data distribution of a source data set. In contrast to previously proposed fully convolutional models, the proposed model implements residual Squeeze and Excitation modules in the generator architecture. We show that our method outperforms all classical audio augmentation techniques and previously published generative methods in terms of generated sample quality and a performance improvement of 2.84% of Macro F1-Score for a classifier trained on the augmented data set, an enhancement of 1.14% in relation to previous work. By analyzing the correlation of intermediate feature spaces, we show that the residual Squeeze and Excitation modules help the model to reduce redundancy in the latent features. Therefore, the proposed model advances the state-of-the-art in the augmentation of clinical audio data and improves the data bottleneck for the design of clinical acoustic sensing systems

    Vortex, skyrmion and elliptical domain wall textures in the two-dimensional Hubbard model

    Full text link
    The spin and charge texture around doped holes in the two-dimensional Hubbard model is calculated within an unrestricted spin rotational invariant slave-boson approach. In the first part we examine in detail the spin structure around two holes doped in the half-filled system where we have studied cluster sizes up to 10 x 10. It turns out that the most stable configuration corresponds to a vortex-antivortex pair which has lower energy than the Neel-type bipolaron even when one takes the far field contribution into account. We also obtain skyrmions as local minima of the energy functional but with higher total energy than the vortex solutions. Additionally we have investigated the stability of elliptical domain walls for commensurate hole concentrations. We find that (i) these phases correspond to local minima of the energy functional only in case of partially filled walls, (ii) elliptical domain walls are only stable in the low doping regime.Comment: 7 pages, 6 figures, accepted for Phys. Rev.

    One-dimensional metallic behavior of the stripe phase in La2x_{2-x}Srx_xCuO4_4

    Full text link
    Using an exact diagonalization method within the dynamical mean-field theory we study stripe phases in the two-dimensional Hubbard model. We find a crossover at doping δ0.05\delta\simeq 0.05 from diagonal stripes to vertical site-centered stripes with populated domain walls, stable in a broad range of doping, 0.05<δ<0.170.05<\delta<0.17. The calculated chemical potential shift δ2\propto -\delta^2 and the doping dependence of the magnetic incommensurability are in quantitative agreement with the experimental results for doped La2x_{2-x}Srx_xCuO4_4. The electronic structure shows one-dimensional metallic behavior along the domain walls, and explains the suppression of spectral weight along the Brillouin zone diagonal.Comment: 4 pages, 4 figure

    Influence of incommensurability on SDW and CDW amplitudes in underdoped cuprates

    Get PDF
    Self-consistent calculations of spin (charge) density wave order (SDW/CDW) parameters have been performed for bilayered cuprates on the basis of a singlet correlated band model. The smooth development of the pseudogap formation temperature is explained from underdoped to overdoped states and the Fourier amplitudes (charge) modulations have been calculated. We have found a maximum of the incommensurability for doping 0.09 ÷ 0.11 holes per copper site. © 2000 Elsevier Science B.V. All rights reserved

    Optimal prediction for moment models: Crescendo diffusion and reordered equations

    Full text link
    A direct numerical solution of the radiative transfer equation or any kinetic equation is typically expensive, since the radiative intensity depends on time, space and direction. An expansion in the direction variables yields an equivalent system of infinitely many moments. A fundamental problem is how to truncate the system. Various closures have been presented in the literature. We want to study moment closure generally within the framework of optimal prediction, a strategy to approximate the mean solution of a large system by a smaller system, for radiation moment systems. We apply this strategy to radiative transfer and show that several closures can be re-derived within this framework, e.g. PNP_N, diffusion, and diffusion correction closures. In addition, the formalism gives rise to new parabolic systems, the reordered PNP_N equations, that are similar to the simplified PNP_N equations. Furthermore, we propose a modification to existing closures. Although simple and with no extra cost, this newly derived crescendo diffusion yields better approximations in numerical tests.Comment: Revised version: 17 pages, 6 figures, presented at Workshop on Moment Methods in Kinetic Gas Theory, ETH Zurich, 2008 2 figures added, minor correction

    Relationship between incommensurability and superconductivity in Peierls distorted charge-density-wave systems

    Full text link
    We study the pairing potential induced by fluctuations around a charge-density wave (CDW) with scattering vector Q by means of the Froehlich transformation. For general commensurability M, defined as |k+M*Q>=|k>, we find that the intraband pair scattering within the M subbands scales with M whereas the interband pair scattering becomes suppressed with increasing CDW order parameter. As a consequence superconductivity is suppressed when the Fermi energy is located between the subbands as it is usually the case for nesting induced CDW's, but due to the vertex renormalization it can be substantially enhanced when the chemical potential is shifted sufficiently inside one of the subbands. The model can help to understand the experimentally observed dependence of the superconducting transition temperature from the stripe phase incommensurability in the lanthanum cuprates.Comment: 6 pages, 3 figure
    corecore