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Geographic range size and evolutionary age

in birds

Thomas J. Webb* and Kevin J. Gaston

Biodiversity and Macroecology Group, Department of Animal and Plant Sciences, University of She¤eld, She¤eld S10 2TN, UK

Together with patterns of speciation and extinction, post-speciation transformations in the range sizes of
individual species determine the form of contemporary species^range-size distributions. However, the
methodological problems associated with tracking the dynamics of a species’ range size over evolutionary
time have precluded direct study of such range-size transformations, although indirect evidence has led to
several models being proposed describing the form that they might take. Here, we use independently
derived molecular data to estimate ages of species in six monophyletic groups of birds, and examine the
relationship between species age and global geographic range size. We present strong evidence that avian
range sizes are not static over evolutionary time. In addition, it seems that, with the regular exception of
certain taxa (for example island endemics and some threatened species), range-size transformations are
non-random in birds. In general, range sizes appear to expand relatively rapidly post speciation; subse-
quently, and perhaps more gradually, they then decline as species age. We discuss these results with
reference to the various models of range-size dynamics that have been proposed.

Keywords: geographic range size; evolutionary age; range-size transformations; birds

1. INTRODUCTION

The majority of species are rare. This observation is
clearly illustrated by the fact that the frequency distribu-
tion of geographic range sizes (the species^range-size
distribution) for a taxonomic group tends to have a very
strong right skew (e.g. Gaston 1994, 1996, 1998; Gaston &
Chown 1999). On a global scale, such distributions must
be a product of three processes: speciation, extinction and
evolution of the range sizes of individual species between
speciation and extinction (Price et al. 1997; Barraclough et

al. 1998; Gaston 1998). Speciation adds range sizes to the
species^range-size distribution and its e¡ects upon the
distribution will depend upon the probability that species
with di¡erent range sizes will speciate and the way in
which the ancestral geographic range is partitioned
between the two daughter species. Extinction removes
range sizes from the distribution and its e¡ects will
depend upon the probability of species with di¡erent
range sizes going extinct. Post-speciation transformations
in the geographic range sizes of individual species will
also in£uence the form of contemporary species^range-
size distributions. Here, the e¡ects will depend on the
form that the transformations take, which in turn will be
determined by the relative inputs of a number of environ-
mental, ecological and evolutionary factors (Miller 1997).

Despite their undoubted importance, the study of
range-size transformations is plagued by methodological
problems and there is no generally accepted model for the
long-term temporal dynamics of species’ geographic
range sizes (Gaston 1996). In order to plot the course of a
species’ range size over time, we would ideally need infor-
mation on its range size from its origination at speciation
until its eventual demise at extinction (Gaston & Kunin
1997). However, because species with restricted range
sizes are less likely to be preserved or discovered as fossils
than more abundant species (McKinney 1997), it follows

that any period in a species’ life span during which it
occurred in a restricted area is also unlikely to be
recorded. Thus, although the fossil record may reliably
record the maximum distributional extent of a species
over its entire duration, it is unlikely to provide su¤-
ciently detailed information on the dynamics of its range
size at a ¢ner temporal scale. Despite such problems,
consideration of the limited evidence available has
resulted in several models being proposed to describe the
form that range-size transformations may take (see
Gaston 1998; Gaston & Blackburn 1997; Gaston & Kunin
1997; Gaston & Chown 1999). For example, observing
that the range sizes of molluscs arising in the two million
years (Myr) before the end-Cretaceous mass extinction
(and whose geological durations were truncated by this
event) were indistinguishable from the range sizes of
molluscs arising in the previous 14 Myr, Jablonski (1987)
inferred that a species’ geographic range size is deter-
mined early in its history and remains more or less
constant throughout its existence. This `stasis’ model
allows for major £uctuations in a species’ range size
during origination and extinction, provided that these
periods of £ux are short relative to the geological dura-
tions of species; once range sizes have reached their stasis
level, range-size transformations will have a minimal
e¡ect on the species^range-size distribution. Alternatively,
geographic range sizes may increase over time (an àge
and area’ model; Willis 1922); this period of increase
would presumably culminate in a rapid decline to extinc-
tion or disappearance through cladogenesis (Gaston &
Chown 1999). Some evidence of a positive correlation
between the àge’ of individual species (de¢ned as the
number of nodes separating a species from the root of the
cladogram) and their geographic range size is presented
by Taylor & Gotelli (1994); Miller (1997) documents an
increase in the overall range sizes of fossil marine genera
in the Ordovician, although it is uncertain whether this
represents an increase in the range of individual species
or increased species richness within genera. Alternatively,
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range sizes may initially expand post-speciation, before
reaching a maximum extent and then declining towards
extinction. This is similar to the concept of a `taxon cycle’
(Wilson 1961; Ricklefs & Cox 1972); supporting evidence
includes the fact that among West Indian passerine birds,
putatively older taxa tend to have smaller ranges than
their younger relatives (Ricklefs & Cox 1978; Ricklefs &
Bermingham 1999). The relative amount of time spent in
phases of increase and decline, and the duration of the
period of maximal range size, will in£uence the extent to
which this model will be distinguishable from the
previous models. Finally, range sizes may change in an
idiosyncratic manner post-speciation.

Determining which, if any, of these models is operating
is fundamental to understanding species^range-size distri-
butions. In addition, if range sizes do change considerably
post-speciation, then in many circumstances this may have
serious repercussions for any reconstructions of past
biogeographic events that are based on the modern
distributions of species (Chesser & Zink 1994; Barraclough
et al. 1998; Gaston 1998; Voelker 1999). One potentially
fruitful method of pursuing the study of range-size trans-
formations may be to consider interspeci¢c variation in
range sizes of contemporary species as representative of an
intraspeci¢c relationship (Gaston 1998), which assumes
that changes will be consistent enough between lineages
for them to have a general biological meaning and to
become apparent as a statistical e¡ect (Ricklefs &
Bermingham 1999). We adopt this approach and examine
the relationship between global geographic range size and
species age in several groups of birds. The key to this
approach is to be able to estimate species age (Ricklefs &
Bermingham 1999); we estimate the ages of extant species
from molecular phylogenies. The quantity and quality of
phylogenetic information available for birds is one of the
reasons why they are an ideal group for the study of range-
size transformations. In addition, it is easy to envisage the
range sizes of highly mobile taxa such as birds changing
extensively over time as ecological and environmental
conditions vary (Chesser & Zink 1994; Price et al. 1997).
Finally, estimates of global distribution (at least in broad
terms) are available for most avian species.

It is unlikely that this method will allow any ¢rm
conclusions to be drawn as to precisely which of the above
models is operating in any one case. For example, a pure
stasis model, even if post-speciation increase and pre-
extinction decline in range size were instantaneous, could
only be distinguished from a random model if each
species within a group attained an identical or very
similar range size, which is certainly not the case.
However, assuming that range-size transformations
within groups are broadly both qualitatively and quanti-
tatively similar, then general patterns of post-speciation
range-size expansion or contraction may become
apparent (Webb et al. 2000), and thus increase under-
standing of the distribution of range sizes among contem-
porary taxa.

2. METHODS

(a) Data and analysis

For reasons outlined below, we consider separately groups of

closely related species (e.g. families or genera). We use only

phylogenies that include all or nearly all of the extant species in

a monophyletic group: Old World Acrocephalus and Hippolais reed

warblers (27 out of 33 species; Helbig & Seibold 1999); New

World Dendroica wood warblers (24 out of 27 species; Lovette &

Bermingham 1999); albatrosses (all 14 species; Nunn et al. 1996);

gannets and boobies (all nine species; Friesen & Anderson

1997); New World Icterus orioles (all 25 species; Omland et al.

1999); and storks (16 out of 19 species; Slikas 1997). Published

distribution maps were obtained for all species included in these

phylogenies except four Far Eastern species of Acrocephalus

warbler (Harrison 1985; Cramp 1992; Del Hoyo et al. 1992;

Curson et al. 1994; Urban et al. 1997; Jaramillo & Burke 1999);

these were converted to estimates of global geographic range

size by transferring them onto an equal-areaWORLDMAP grid

(Williams 1996). The grid employed here has squares of 108

longitude, each with an area of ca. 611000 km2. For most groups,

the overall range size (breeding and non-breeding ranges) was

used. However, for the albatrosses it was felt that breeding range

(islands on which breeding occurs) might provide a more

realistic measure of the area occupied by each species as a

whole. The coarse scale of our range-size estimates means that

such measures of breeding range size will encompass short-

range foraging trips but not the extensive oceanic wanderings of

individual birds, which would in£ate estimates of overall range

size. For this group then, we consider separately breeding and

overall ranges. Plots of global geographic range size (log10 trans-

formed) against species age were produced for each group, and

any emergent patterns were analysed using linear or quadratic

regressions as appropriate.

(b) Estimating taxon age from molecular

phylogenies

Data on pairwise genetic divergences between species

obtained from published molecular phylogenies were converted

to approximate times since divergence (¢gure 1a). This analysis

assumes that genetic divergence is proportional to time, a

contentious issue (Klicka & Zink 1997) with rates of molecular

evolution being in£uenced by such factors as body size, genera-

tion time and metabolic rate (Martin & Palumbi 1993). Such

e¡ects should be minimal if only groups of closely related

species are considered (Klicka & Zink 1997; Fleischer et al. 1998;

Voelker 1999), although this will not correct for other potential

sources of rate heterogeneity, such as population history (e.g.

frequency of bottlenecks: Klicka & Zink 1997; Gaggiotti &

Exco¤er 2000). Despite the problems associated with the idea

of a molecular clock, it has been widely employed (albeit with

considerable caution) in the reconstruction of past biogeo-

graphic events in avian speciation (e.g. Zink et al. 1991, 1999;

Bermingham et al. 1992; Randi 1996; Seibold & Helbig 1996;

Wink et al. 1996; Klicka & Zink 1997; Bloomer & Crowe 1998;

Cicero & Johnson 1998; Johnson & Sorenson 1998; Pasquet

1998; Garcia-Moreno et al. 1999; Lovette & Bermingham 1999;

Lovette et al. 1999; Ricklefs & Bermingham 1999; Sorenson et al.

1999). All of these studies have used the consensus rate of 2%

divergence of mitochondrial DNA per Myr, estimated for non-

passerine (geese; Shields & Wilson 1987) and passerine

(Hawaiian honeycreepers; Tarr & Fleischer 1993; Fleischer et al.

1998) birds; estimates for albatrosses (1.6^2.9%; Nunn et al.

1996) and cranes (0.7^1.7%; Krajewski & King 1996) are also

close to this 2% consensus rate. We therefore employ this rate of

2% Myr71 (although we use the appropriate rates calculated by

Nunn et al. (1996) for our analysis of the albatrosses). If another

rate is operating in any one of the groups, then providing it is
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constant across the group, it would cause only a rescaling of the

age axis in our species age^range-size plots. Even if molecular

evolution does not proceed in a strictly clock-like manner,

degrees of divergence should at least be correlated with diver-

gence times (Klein & Brown 1994; Voelker 1999), and so for the

purposes of our analyses any qualitative patterns observed under

the assumption of a molecular clock should be robust to

moderate violations of this assumption.

Any species, whether extant or extinct, missing from the

phylogeny may cause the ages of certain species to be overesti-

mated (Gaston & Blackburn 1996; ¢gure 1b). This e¡ect will be

exacerbated if the missing species is sister to a species included

in the phylogeny that has no other close relatives; conversely, a

species missing from a speciose clade resulting from a rapid

burst of speciation should have only a minimal e¡ect on age esti-

mates. As well as seeking phylogenies including all extant

members, then, we tried to avoid groups for which there is

strong evidence of high rates of extinction in the recent past.

A further potential problem with our method of estimating

taxon age involves uncertainty over the prevalence of ancestral

species that persist after giving rise to daughter species: modern

cladists tend to downplay the importance of such speciation

events, whereas palaeontologists are more comfortable with it

(Gaston & Chown 1999). If they do occur, these events may

lead to an underestimation of the age of the persisting ancestor

(¢gure 1c). The e¡ect of such speciation events on our analyses

will depend on which of the models of range-size transforma-

tions is operating and at what stage in its life span a species is

most likely to give rise to a daughter species. For example, if the

ranges of widespread species fragment over time, any isolated

population that persists and diverges su¤ciently from its

ancestor will remove evidence of range sizes declining as a

species ages.

(c) Excluded taxa

There are two groups of taxa that are expected regularly to

deviate from any emergent relationship between species age and

geographic range size. First, island species derived from a wide-

spread continental relative are unlikely subsequently to recolo-

nize the mainland, especially as island species tend to move

towards more central island habitats and become more specia-

lized in their habitat requirements as they age (Wilson 1961;

Ricklefs & Cox 1978; Ricklefs & Bermingham 1999). This will

therefore limit the opportunity for range expansion among

island endemics, at least at the scale of our estimates of

geographic range size. The situation in the albatrosses may be

somewhat di¡erent because these birds evidently have the

dispersal capabilities to increase their range sizes even if they

have evolved on isolated oceanic islands (the wandering alba-

tross Diomedea exulans, for example, breeds on several such

islands; Harrison 1985). In this group only, then, there was no a

priori exclusion from formal statistical analysis of species

endemic to a single island or island group.

The second group of species expected to deviate from any

general relationship between species age and geographic range

size includes those species that have su¡ered recent declines in

range size due to anthropogenic factors. We assume that all

species whose historical range has been reduced to such a degree

that the number of 108 longitude squares occupied has also

declined will be listed as globally threatened. We therefore iden-

ti¢ed all species in the studied groups listed as globally threa-

tened by Collar et al. (1994), and by examining the justi¢cation

given by Collar et al. for inclusion on the list we determined

which of these species historically occupied more grid squares

than they do today. All such species were excluded from formal

statistical analysis.

3. RESULTS

(a) Old World Acrocephalus and Hippolais reed

warblers

In this group there is evidence of a decline in range
sizes as species age (¢gure 2a). The one conspicuous
outlying point is the Seychelles warbler Acrocephalus
sechellensis, which, being endemic to the Seychelles, is
excluded from analysis. The other Acrocephalus species
included in this data set that may warrant exclusion
under the criteria outlined in ½ 2(c) is the aquatic warbler
Acrocephalus paludicola. The range of this species `. . . has
contracted sharply eastwards since the turn of the [20th]
century’ (Collar et al. 1994, p.167); although it is not a
conspicuous outlier, its range size is smaller than those of
other species of a similar age. Excluding these two
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Figure 1. The method and potential problems associated with

estimating species age from molecular phylogenies. (a) The
ages of species 1 and 2 are estimated by converting the pair-

wise percentage sequence divergence between them to an
estimate of time since divergence, using the consensus ¢gure of

2%sequencedivergenceper millionyears.The ageof species 3

is estimated in the same way, except that the mean of the
pairwise sequence divergences between species 3 and species 1

and between species 3 and species 2 is used. (b) Species
missing from the phylogeny, whether extant or extinct, may

cause the ages of species included in the phylogeny to be over-
estimated. Here, the ages of both species 4 and species 5 are

estimated by the pairwise sequence divergence between them,

whereas species 5 actually originated more recently from its
common ancestor with the missing species. (c) If an ancestral

species persists after giving rise to a daughter species, its age
will be underestimated by this method. Here, sampling species

at point y, the ages of both species 6 and species 7 are esti-

mated by the pairwise sequence divergence between them,
whereas in fact the age of species 6 should be estimated by the

average pairwise sequence divergence between it and species 4
and 5. This is illustrated by the fact that we would obtain an

older age estimate for species 6 if we had sampled it earlier in
its evolutionary history (point x).



taxa, the decline in range size with age in this group is
signi¢cant (b ˆ 7 0.075 § 0.034 (s.e.m.), r2

ˆ 0.202,
d.f. ˆ 20, p ˆ 0.041).

(b) New World Dendroica wood warblers

In the Dendroica warblers (¢gure 2b) there is a general
curvilinear relationship (increase followed by decrease)
between species age and geographic range size, with two
conspicuous outliers, the West Indian endemic olive-
capped warbler and Adelaide’s warbler (Dendroica

pityophila and Dendroica adelaidae). Excluding these species,
along with the other West Indian endemics Dendroica

pharetra, Dendroica plumbea and Catharopeza bishopi, quad-
ratic regression provides a signi¢cantly better ¢t to the
data than does linear regression (F-test, F1,18 ˆ 5.48,
p 5 0.05; Zar1996, p. 448), explaining 23.5% of the varia-
tion in range sizes observed in this group
(b1 ˆ 0.313 § 0.142, b2 ˆ 7 0.062 § 0.027, r2

ˆ 0.235,
d.f. ˆ 18, p ˆ 0.089; linear regression, b ˆ 7 0.009 § 0.039,
r2

ˆ 0.003, d.f. ˆ 19, p ˆ 0.824).

(c) Icterus orioles

As observed in the Old World reed warblers, in the
New World Icterus orioles (¢gure 2c) there seems to be a
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Figure 2. Plots of global geographic range size against species age (Myr). Crosses represent species excluded from regression

analysis (see } 3 for details). (a) Old World Acrocephalus and Hippolais reed warblers; 1, Seychelles warbler Acrocephalus sechellensis,
2, aquatic warbler Acrocephaluspaludicola. (b) New World Dendroica wood warblers; 1, olive-capped warbler Dendroica p ityophila,

2, Adelaide’s warbler Dendroica adelaidae, 3, whistling warbler Catharopeza bishopi and arrow-headed warbler Dendroicapharetra,

4, plumbeous warbler Dendroicap lumbea. (c) New World Icterus orioles; 1, black-backed oriole Icterus abeillei, 2, St Lucia,
Martinique and Montserrat orioles Icterus laudabilis, Icterus bonana and Icterus oberi, 3, Jamaican oriole Icterus leucop teryx. (d ) Storks;

1, oriental white stork Ciconia boyciana, 2, Storm’s stork Ciconia stormi, 3, black stork Ciconia nigra. (e) Gannets and boobies;
1, Abbott’s booby Papasula abbotti. ( f ) Albatrosses; 1, Buller’s albatross Diomedea bulleri, 2, shy albatross Diomedea cauta,

3, Amsterdam albatross Diomedea amsterdamensis, 4, short-tailed albatross Diomedea albatrus.



general trend of decreasing range sizes as species age. The
principal outliers here are West Indian endemics.
Excluding these island outliers, the linear negative rela-
tionship between species age and geographic range size is
signi¢cant (b ˆ 7 0.092 § 0.042, r2

ˆ 0.177, d.f. ˆ 23,
p ˆ 0.041). The other conspicuous outlying point in this
data set is the black-backed oriole Icterus abeillei. This
species is a Mexican endemic, which until recently was
considered conspeci¢c with the North American Bullock’s
and Baltimore orioles (Icterus bullockii and Icterus galbula;
Jaramillo & Burke 1999). It may therefore represent the
position of recently di¡erentiated oriole species, which
then tend to rapidly increase their range sizes before the
gradual decline. Excluding this species improves the ¢t of
the regression line (b ˆ 7 0.115 § 0.041, r2

ˆ 0.269,
d.f. ˆ 22, p ˆ 0.011; this line is shown in ¢gure 2c),
although it does not signi¢cantly change its slope
(t ˆ 0.389, d.f. ˆ 43, p 4 0.5).

(d) Storks (Ciconiidae)

Among the storks (¢gure 2d) there appears to be a
general trend of increasing range sizes post-speciation
with a subsequent decline as species age. Three species
fall conspicuously outside this general relationship. The
oriental white stork Ciconia boyciana is excluded from
analysis because its current range covers fewer grid
squares than was historically the case (Collar et al. 1994).
Storm’s stork Ciconia stormi is another relatively young
species with a restricted range, but here there is no
evidence of a substantial recent decline in range size
(Collar et al. 1994). This species, for whatever reason,
seems to be analogous to an island species: unable to
expand its range post-speciation, it seems likely to go
extinct at a relatively young age. Finally, the black stork
Ciconia nigra appears to have a very large range despite its
old age. The phylogenetic position of this species with
respect to its congeners is rather uncertain (Slikas 1997),
although in each phylogenetic hypothesis illustrated by
Slikas (1997) C. nigra is the most basal member of the
Ciconia clade, so increased phylogenetic resolution is unli-
kely to alter signi¢cantly the estimate of its age. However,
although it meets neither of the criteria for exclusion, it
seems to occur at low densities throughout its range, with
a world population of perhaps a few thousand pairs,
compared to the 150 000 or so pairs of European white
storks C. ciconia occupying a similar global range size (Del
Hoyo et al. 1992). As it prefers undisturbed open wood-
land habitat (Del Hoyo et al. 1992), it seems likely that
although the overall extent of C. nigra’s occurrence may
not have declined su¤ciently to be detectable by our
crude measure of range size, the range size so measured
will in fact include extensive areas of habitat no longer
occupied by this species. Excluding the three outlying
species, over 50% of the observed variation in range sizes
amongst storks is explained by quadratic regression
analysis of range size on age (b1 ˆ 0.557 § 0.175,
b2 ˆ 70.097 § 0.031, r2

ˆ 0.503, d.f. ˆ 12, p ˆ 0.030), a
signi¢cant improvement on the linear model (F1,10 ˆ 9.41,
p 5 0.05).

(e) Gannets and boobies (Sulidae)

In the gannets and boobies (¢gure 2e) there is a
pattern among non-threatened species of range expansion

with increasing species age. This increase is signi¢cant
(b ˆ 0.532 § 0.146, r2

ˆ 0.689, d.f. ˆ 7, p ˆ 0.011) and rela-
tively rapid, with maximum range sizes reached by an
age of about 2 Myr. Unfortunately, there are no species of
intermediate age in this group, and the only old species
(Abbott’s booby Papasula abbotti) quali¢es for exclusion
from analysis because it has been extirpated from at least
two widely separated breeding localities during the last
three centuries (Collar et al. 1994). It is therefore impos-
sible to infer what happens to Sulids as they pass into
middle and old age.

(f) Albatrosses (Diomedeidae)

In the albatrosses (¢gure 2 f ), the pattern seems to be
one of rapid increase in breeding range size followed by a
gradual decrease as species age: the two youngest species
have relatively restricted range sizes, but maximum range
sizes are observed in species only marginally older, with a
signi¢cant decline in range sizes thereafter (b ˆ 70.100
§ 0.016, r2

ˆ 0.836, d.f. ˆ 9, p ˆ 0.0002). For this analysis,
two species in addition to the two youngest species were
omitted. The oldest species in the group, the threatened
short-tailed albatross Diomedea albatrus, is excluded
because it no longer breeds on islands in several grid
squares where it was previously found; these extinctions
have been primarily due to exploitation for feathers
(Collar et al. 1994). The Amsterdam albatross Diomedea
amsterdamensis, is endemic to a single island, but as stated
in ½ 2(c) this may not be an appropriate criterion for the
exclusion of albatross species due to their high dispersal
capabilities. However, particularly when humans enter
the equation, it may often be the fate of newly di¡eren-
tiated species to remain endemic to a single island and
risk early extinction, which unfortunately seems likely in
D. amsterdamensis (Collar et al. 1994). It is also worth
noting that the speci¢c status of this albatross is not
universally accepted and it may be better considered a
race of the wandering albatross Diomedea exulans (Del
Hoyo et al. 1992). Overall range size also declines signi¢-
cantly with age in this group (b ˆ 7 0.138 § 0.049,
r2

ˆ 0.445, d.f. ˆ 11, p ˆ 0.018); only D. albatrus and
D. amsterdamensis were excluded from this analysis, the two
youngest species having already achieved large overall
range sizes.

4. DISCUSSION

As expected, given the theoretical and methodological
problems outlined in ½ 1, the relationship between species
age and geographic range size does not appear to be a
simple one. Within taxa, range sizes are clearly not
adhering precisely to any one of the models outlined in
½ 1, and di¡erent models may be operating in di¡erent
taxonomic groups. However, despite the inevitable noise
introduced into the relationships by the rather crude esti-
mates of both species age and geographic range size, a
random model can be rejected in all of the data sets
employed, which strongly suggests that post-speciation
range-size transformations themselves do not occur
entirely at random. In the Acrocephalus and Hippolais

warblers, the Icterus orioles and the albatrosses there is a
general trend of decreasing range sizes with increasing
species age, over the majority of ages considered. In the
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New World Dendroica warblers and the storks the pattern
is more curvilinear, with the decline in range sizes
following a more gradual increase. The gannets and
boobies provide the only evidence that a simple àge and
area’ model (Willis 1922) may be operating, with a trend
for increasing range sizes as species age, but the lack of
middle- to old-aged species and the position of Abbott’s
booby suggest that in this group too range sizes may
decline as species pass into middle and old age.

Although the àge and area’ model (Willis 1922) implies
that species range sizes increase gradually over time, both
Jablonski’s (1987) stasis model and the taxon cycle
concept (Wilson 1961; Ricklefs & Cox 1972, 1978) predict
that post-speciation, species’ ranges expand rapidly to
their maximum extents (over less than 0.5 Myr in the
Lesser Antillean avifauna; Ricklefs & Bermingham 1999).
Our data tend to support this second prediction (¢gure 2):
in all groups, maximum range sizes are reached by an
age of about 2 Myr. Further evidence for this pattern
might be provided if there were more very young species
in our data sets; if these tended to have small ranges, this
would suggest that the rapid expansion in range sizes
does follow immediately post-speciation. There are two
possible reasons why such species might be lacking. First,
it might be the usual fate of newly formed species with
very small range sizes (for instance peripheral isolates) to
go extinct more or less straight away, with only an excep-
tional few persisting long enough to embark upon the
phase of expansion (Chesser & Zink 1994). Alternatively,
it might be that such species are `hidden’ from our
analyses, as they are currently considered as subspeci¢c
taxa of older and more widespread species. As a preli-
minary attempt to investigate this second possibility, we
plotted global geographic range size against taxon age for
every Acrocephalus and Hippolais taxon (subspecies as well
as monotypic full species) included in the phylogeny of
Helbig & Seibold (1999) for which distribution maps
were available (n ˆ 27; ¢gure 3). It can be seen that
whereas the relationship for full species only was signi¢-
cantly negative (¢gure 2a), here (excluding species as
before) a positive relationship results (b ˆ 0.079 § 0.040,
r2

ˆ 0.138, d.f. ˆ 26, p ˆ 0.056). Because including subspe-
cies means that species with subspecies will undergo a
reduction in both taxon age and range size (the range
sizes of subspecies rarely overlapping to any degree), this
result suggests that di¡erentiation occurs in fairly young,
widespread taxa: it is young to middle-aged taxa whose
ages and ranges have decreased to cause the positive rela-
tionship, whereas the position of older taxa in ¢gure 3 is
similar to that in ¢gure 2a. Indeed, the increase in range
size with age in ¢gure 3 seems to slow down and even
reverse at ages over about 4 Myr (although this trend is
not strong enough to favour quadratic over linear regres-
sion, F1,24 ˆ 1.367, p 4 0.25). It is possible that a curvi-
linear relationship between age and range size, such as
that observed in the Dendroica warblers, may result from
confusion over the speci¢c status of taxa included in the
study.

Following the initial expansion, the stasis model then
predicts that species’ range sizes remain at this maximum
extent until an equally rapid decline prior to extinction,
whereas under a taxon-cycle model the decline begins
earlier but is much more gradual, as populations across

the range di¡erentiate and some go extinct until the
species persists only as an endemic with a very restricted
range (Wilson 1961; Ricklefs & Cox 1972, 1978). Our data
appear to favour this second scenario (see the compara-
tively long periods of range-size decline in all groups
except the gannets and boobies in ¢gure 2), although it is
possible that a stasis model could generate such a pattern
if species within a group had di¡ering life spans.

As outlined in ½ 2(c), two groups of taxa regularly
deviated from the general patterns documented in ¢gure 2.
First, island endemics evidently have tiny range sizes
regardless of their age. However, such species do tend to
be of middle to old age, which suggests that taxa recently
colonizing islands are likely still to be considered subspe-
ci¢c to their continental ancestor. Older species that have
di¡erentiated to full species status on islands may be
unable to recolonize the mainland, thus limiting their
potential for range expansion. Of course, post-speciation
changes in range sizes are likely even among island ende-
mics, as new islands are colonized and other populations
go extinct (see, for example, Ricklefs & Bermingham
1999). However, the crude scale of resolution in our
range-size estimates (where, for example, the entire
Lesser Antilles are contained within two grid squares) is
unlikely to show such patterns.

The other conspicuous outlying points in the plots in
¢gure 2 represent those threatened species that have
su¡ered recent and large-scale declines in their range
sizes, probably due to human activities. We discuss else-
where the potentially dire consequences for future avian
diversity of disrupting `natural’ patterns of rarity (Webb et

al. 2000), but it is worth emphasizing the three ways in
which the human factor might impact upon a general
pattern of rapid expansion to maximum range sizes
followed by a decline prior to extinction: ¢rst, young
species may be unable to expand their ranges (e.g. the
youngest storks Mycteria cinerea and Mycteria leucocephala

(¢gure 2d) are listed in Collar et al. (1994) as `vulnerable’
and `near threatened’, respectively; it therefore seems
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unlikely that a period of range expansion is imminent in
either species); second, species of middle age may su¡er
marked declines (e.g. the endangered stork C. boyciana

(¢gure 2d) and the vulnerable Acrocephalus paludicola

(¢gure 2a)); and third, old species may be hastened
towards extinction (e.g. the endangered albatross
D. albatrus (¢gure 2 f ) and the vulnerable booby P. abbotti

(¢gure 2e)). One further point is that species declines may
result from fragmentation across a species’ entire range,
as well as from contraction into a small area of the
original range (Lawton 1993); the crude measures of
range size used here are more likely to identify the latter
pattern of decline than the former (see the anomalous
position of the black stork C. nigra in ¢gure 2d).

5. CONCLUSIONS

Previous interpretations of biogeographic history have
often su¡ered from the fact that it has been impossible to
estimate the relative ages of the populations involved
independently of the geographical patterns that they
show (Ricklefs & Cox 1972). By employing independent,
molecular-derived estimates of age, we have been able to
document broad relationships between the age of indivi-
dual species and their global geographic range sizes in
several groups of biologically rather dissimilar birds.
These relationships provide strong support for the notion
that avian range sizes are dynamic and that dispersal has
played a vitally important role in shaping the current
species^range-size distribution (e.g. Chesser & Zink 1994;
Voelker 1999; Zink et al. 2000), implying that caution
should be used in applying the current distributions of
species to processes that have taken place in the distant
past (Chesser & Zink 1994; Gaston & Chown 1999).
However, our data also indicate that these post-speciation
range-size transformations do not occur entirely at
random; rather, there is some suggestion of a general
pattern of an increase in range sizes immediately post-
speciation followed by a subsequent decline towards
extinction. This consistency suggests that organismal
phylogenies can preserve important information about
the historical distributions of species (see also Zink et al.
2000). As more accurate information on the phylogenetic
relationships between bird species becomes available, and
as estimates of geographic range sizes are re¢ned, these
patterns may become clearer, but if generally true, the
expectation of rarity at both ends of a species’ lifetime
may explain to a certain extent the highly asymmetrical
form of the species^range-size distribution. This distribu-
tion is likely to become more highly skewed, as the
position of threatened species in the species-age^range-
size relationships provides further evidence of the disrup-
tive e¡ect that humans are having upon global avian
biodiversity.
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