788 research outputs found

    On The Determination of MDI High-Degree Mode Frequencies

    Full text link
    The characteristic of the solar acoustic spectrum is such that mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases for a given order. A direct consequence of this property is that individual p-modes are only resolved at low and intermediate degrees, and that at high degrees, individual modes blend into ridges. Once modes have blended into ridges, the power distribution of the ridge defines the ridge central frequency and it will mask the true underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present the results of fitting high degree power ridges (up to l = 900) computed from several two to three-month-long time-series of full-disk observations taken with the Michelson Doppler Imager (MDI) on-board the Solar and Heliospheric Observatory between 1996 and 1999. We also present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than some ad hoc correction scheme) resulting in a methodology that can produce an unbiased determination of high-degree modes, once the instrumental characteristics are well understood. Finally, we present changes in high degree mode parameters with epoch and thus solar activity level and discuss their significance.Comment: 59 pages, 38 figures -- High-resolution version at http://www-sgk.harvard.edu:1080/~sylvain/preprints/ -- Manuscript submitted to Ap

    Measuring the Solar Radius from Space during the 2003 and 2006 Mercury Transits

    Full text link
    The Michelson Doppler Imager (MDI) aboard the Solar and Heliospheric Observatory observed the transits of Mercury on 2003 May 7 and 2006 November 8. Contact times between Mercury and the solar limb have been used since the 17th century to derive the Sun's size but this is the first time that high-quality imagery from space, above the Earth's atmosphere, has been available. Unlike other measurements this technique is largely independent of optical distortion. The true solar radius is still a matter of debate in the literature as measured differences of several tenths of an arcsecond (i.e., about 500 km) are apparent. This is due mainly to systematic errors from different instruments and observers since the claimed uncertainties for a single instrument are typically an order of magnitude smaller. From the MDI transit data we find the solar radius to be 960".12 +/- 0".09 (696,342 +/- 65 km). This value is consistent between the transits and consistent between different MDI focus settings after accounting for systematic effects.Comment: Accepted for publication in The Astrophysical Journal (2012 March 5

    Kinematic frames and "active longitudes": does the Sun have a face?

    Get PDF
    It has recently been claimed that analysis of Greenwich sunspot data over 120 years reveals that sunspot activity clusters around two longitudes separated by 180 degrees (``active longitudes'') with clearly defined differential rotation during activity cycles.In the present work we extend this critical examination of methodology to the actual Greenwich sunspot data and also consider newly proposed methods of analysis claiming to confirm the original identification of active longitudes. Our analysis revealed that values obtained for the parameters of differential rotation are not stable across different methods of analysis proposed to track persistent active longitudes. Also, despite a very thorough search in parameter space, we were unable to reproduce results claiming to reveal the century-persistent active longitudes. We can therefore say that strong and well substantiated evidence for an essential and century-scale persistent nonaxisymmetry in the sunspot distribution does not exist.Comment: 14 pages, 1 table, 21 figures, accepted in A&

    On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    Full text link
    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since beginning normal science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. We describe the calibration measurements used to track HMI performance and detail trends in important instrument parameters during the mission. Regular calibration sequences provide information used to improve and update the HMI data calibration. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 15% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable-optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events, such as eclipses, transits, and spacecraft off-points, interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.Comment: 50 pages, 18 figures, 20 table

    Maternal Recreational Exercise during Pregnancy in relation to Children's BMI at 7 Years of Age

    Get PDF
    Exposures during fetal life may have long-term health consequences including risk of childhood overweight. We investigated the associations between maternal recreational exercise during early and late pregnancy and the children's body mass index (BMI) and risk of overweight at 7 years. Data on 40,280 mother-child pairs from the Danish National Birth Cohort was used. Self-reported information about exercise was obtained from telephone interviews around gestational weeks 16 and 30. Children's weight and height were reported in a 7-year follow-up and used to calculate BMI and overweight status. Data was analyzed using multiple linear and logistic regression models. Recreational exercise across pregnancy was inversely related to children's BMI and risk of overweight, but all associations were mainly explained by smoking habits, socioeconomic status, and maternal pre-pregnancy BMI. Additionally, we did not find exercise intensity or changes in exercise habits in pregnancy related to the children's BMI or risk of overweight

    Maternal Distress during Pregnancy and Offspring Childhood Overweight

    Get PDF
    Background. Maternal distress during pregnancy increases the intrauterine level of glucocorticoids, which may have long-term health consequences for the child. Objective. To examine if distress as a combined measure of anxiety, depression, and stress of the mother during pregnancy was associated with offspring childhood overweight at age 7. Methods. We performed a cohort study using prospective data from 37,764 women and child dyads from the Danish National Birth Cohort (1996–2002). At a telephone interview at approximately 30 weeks gestation, the women reported whether they felt anxious, depressed, or stressed. The 95 percentile for body mass index in an international reference defined childhood overweight at any given age. Logistic regression was used for the analyses. Results. The prevalence of overweight children at 7 years of age was 9.9%. Prenatal exposure to maternal distress during pregnancy was not associated with childhood overweight at 7 years of age (adjusted OR 1.06 (95% CI 0.96; 1.18)). In analyses stratified on sex, a small tendency of overweight was seen in boys (OR 1.15 (0.99; 1.33)), but not in girls (OR 0.98 (0.85; 1.13)). Conclusions. Maternal distress during pregnancy appeared to have limited, if any, influence on the risk of overweight in offspring at 7 years of age

    Does the Babcock--Leighton Mechanism Operate on the Sun?

    Full text link
    The contribution of the Babcock-Leighton mechanism to the generation of the Sun's poloidal magnetic field is estimated from sunspot data for three solar cycles. Comparison of the derived quantities with the A-index of the large-scale magnetic field suggests a positive answer to the question posed in the title of this paper.Comment: 5 pages, 2 figures, to apper in Astronomy Letter

    Observation and Modeling of the Solar-Cycle Variation of the Meridional Flow

    Get PDF
    We present independent observations of the solar-cycle variation of flows near the solar surface and at a depth of about 60 Mm, in the latitude range ±45\pm45^\circ. We show that the time-varying components of the meridional flow at these two depths have opposite sign, while the time-varying components of the zonal flow are in phase. This is in agreement with previous results. We then investigate whether the observations are consistent with a theoretical model of solar-cycle dependent meridional circulation based on a flux-transport dynamo combined with a geostrophic flow caused by increased radiative loss in the active region belt (the only existing quantitative model). We find that the model and the data are in qualitative agreement, although the amplitude of the solar-cycle variation of the meridional flow at 60 Mm is underestimated by the model.Comment: To be published in Solar Physcis Topical Issue "Helioseismology, Asteroseismology, and MHD Connections

    Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    Get PDF
    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field

    Local models of stellar convection: Reynolds stresses and turbulent heat transport

    Full text link
    We study stellar convection using a local three-dimensional MHD model, with which we investigate the influence of rotation and large-scale magnetic fields on the turbulent momentum and heat transport. The former is studied by computing the Reynolds stresses, the latter by calculating the correlation of velocity and temperature fluctuations, both as functions of rotation and latitude. We find that the horisontal correlation, Q_(theta phi), capable of generating horisontal differential rotation, is mostly negative in the southern hemisphere for Coriolis numbers exceeding unity, corresponding to equatorward flux of angular momentum in accordance with solar observations. The radial component Q_(r phi) is negative for slow and intermediate rotation indicating inward transport of angular momentum, while for rapid rotation, the transport occurs outwards. Parametrisation in terms of the mean-field Lambda-effect shows qualitative agreement with the turbulence model of Kichatinov & R\"udiger (1993) for the horisontal part H \propto Q_(theta phi)/cos(theta), whereas for the vertical part, V \propto Q_(r phi)/sin(theta), agreement only for intermediate rotation exists. The Lambda-coefficients become suppressed in the limit of rapid rotation, this rotational quenching being stronger for the V component than for H. We find that the stresses are enhanced by the presence of the magnetic field for field strengths up to and above the equipartition value, without significant quenching. Concerning the turbulent heat transport, our calculations show that the transport in the radial direction is most efficient at the equatorial regions, obtains a minimum at midlatitudes, and shows a slight increase towards the poles. The latitudinal heat transport does not show a systematic trend as function of latitude or rotation.Comment: 26 pages, 20 figures, final published version. For a version with higher resolution figures, see http://cc.oulu.fi/~pkapyla/publ.htm
    corecore