471 research outputs found

    Infrared Spectroscopic Study of Vibrational Modes across the Orthorhombic Tetragonal Phase Transition in Methylammonium Lead Halide Single Crystals

    Get PDF
    Single crystals of the methylammonium MA lead halides MAPbI3, MAPbBr3, and MAPbCl3 have been investigated using infrared spectroscopy with the aim of analyzing structural and dynamical aspects of processes that enable the ordering of the MA molecule in the orthorhombic crystal structure of these hybrid perovskites. Our temperature dependent studies were focused on the analysis of the CH NH rocking, C N stretching, and CH NH bending modes of the MA molecule in the 800 1750 cm 1 frequency range. They deliver a direct comparison of the behaviors of the three halides on crossing the orthorhombic tetragonal phase transition in MA lead halide single crystals. Drastic changes of all vibrational modes close to the phase transition were clearly observed. Additional spectral features that were not discussed previously are pointed out. The transformation of the two dimensional orthorhombic hydrogen bond layers into a more three dimensional arrangement in the tetragonal phase seems to be an important feature providing deeper insights into the mechanisms that lead to a free rotating MA molecule in the inorganic host structure. The change of the molecule site symmetry in the tetragonal crystal structure seems to be an important feature of the orthorhombic tetragonal phase transition. For low temperatures, it can be stated that the iodide is stronger influenced by hydrogen bonding than the bromide and the chlorid

    Facile Bulk Synthesis of pi Cubic SnS

    Get PDF
    The cubic modification of binary tin sulfide SnS has gained significant interest as an earth abundant, low toxicity solar absorber material with a band gap close to the optimal value for the conversion of sunlight. We herein report a simple synthesis for the metastable material, which will allow more elaborate characterization methods to be used on this material, and present a full powder refinement of the material along with some preliminary results on the optical and thermal stability propertie

    High homogeneous freezing onsets of sulfuric acid aerosol at cirrus temperatures

    Get PDF
    Homogeneous freezing of aqueous solution aerosol particles is an important process for cloud ice formation in the upper troposphere. There the air temperature is low, the ice supersaturation can be high and the concentration of ice-nucleating particles is too low to initiate and dominate cirrus cloud formation by heterogeneous ice nucleation processes. The most common description to quantify homogeneous freezing processes is based on the water activity criterion (WAC) as proposed by Koop et al. (2000). The WAC describes the homogeneous nucleation rate coefficients only as a function of the water activity, which makes this approach well applicable in numerical models. In this study, we investigate the homogeneous freezing behavior of aqueous sulfuric acid aerosol particles by means of a comprehensive collection of laboratory-based homogeneous freezing experiments conducted at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber, which were conducted as part of 17 measurement campaigns since 2007. The most recent experiments were conducted during October 2020 with special emphasis on temperatures below 200 K. Aqueous sulfuric acid aerosol particles of high purity were generated by particle nucleation in a gas flow composed of clean synthetic air and sulfuric acid vapor, which was added to the AIDA chamber. The resulting chamber aerosol had number concentrations from 30 cm−3^{-3} up to several thousand per cubic centimeter with particle diameters ranging from about 30 nm to 1.1 µm. Homogeneous freezing of the aerosol particles was measured at simulated cirrus formation conditions in a wide range of temperatures between 185 and 230 K with a steady increase of relative humidity during each experiment. At temperatures between about 205 K and about 230 K, the AIDA results agree well with the WAC-based predictions of homogeneous freezing onsets. At lower temperatures, however, the AIDA results show an increasing deviation from the WAC-based predictions towards higher freezing onsets. For temperatures between 185 and 205 K, the WAC-based ice saturation ratios for homogeneous freezing onsets increase from about 1.6 to 1.7, whereas the AIDA measurements show an increase from about 1.7 to 2.0 in the same temperature range. Based on the experimental results of our direct measurements, we suggest a new fit line to formulate the onset conditions of homogeneous freezing of sulfuric acid aerosol particles as an isoline for nucleation rate coefficients between 5×108^{8} and 1013^{13} cm−3^{-3} s−1^{-1}. The potential significant impacts of the higher homogeneous freezing thresholds, as directly observed in the AIDA experiments under simulated cirrus formation conditions, on the model prediction of cirrus cloud occurrence and related cloud radiative effects are discussed

    Understanding the growth mechanism of BaZrS3_3 chalcogenide perovskite thin films from sulfurized oxide precursors

    Get PDF
    Barium zirconium sulfide (BaZrS3_3) is an earth-abundant and environmentally friendly chalcogenide perovskite with promising properties for various energy conversion applications. Recently, sulfurization of oxide precursors has been suggested as a viable solution for effective synthesis, especially from the perspective of circumventing the difficulty of handling alkali earth metals. In this work, we explore in detail the synthesis of BaZrS3_3 from Ba-Zr-O oxide precursor films sulfurized at temperatures ranging from 700 ∘^\circC to 1000 ∘^\circC. We propose a formation mechanism of BaZrS3_3 based on a two-step reaction involving an intermediate amorphization step of the BaZrO3 crystalline phase. We show how the diffusion of sulfur (S) species in the film is the rate-limiting step of this reaction. The processing temperature plays a key role in determining the total fraction of conversion from oxide to sulfide phase at a constant flow rate of the sulfur-containing H2S gas used as a reactant. Finally, we observe the formation of stoichiometric BaZrS3_3 (1:1:3), even under Zr-rich precursor conditions, with the formation of ZrO2_2 as a secondary phase. This marks BaZrS3_3 quite unique among the other types of chalcogenides, such as chalcopyrites and kesterites, which can instead accommodate quite a large range of non-stoichiometric compositions. This work opens up a pathway for further optimization of the BaZrS3_3 synthesis process, straightening the route towards future applications of this material.Comment: Equal contributio

    Analysis of grain orientation and defects in Sb2Se3 solar cells fabricated by close spaced sublimation

    Get PDF
    The performance of a superstrate TiO2 Sb2Se3 solar cell, fabricated by close spaced sublimation technique CSS , was improved after the deployment of a seed layer. The seed layer caused columnar Sb2Se3 film growth with texture coefficient analysis TC showing increased presence of crystal planes, which are inclined towards the [001] crystal direction. Given the highly anisotropic properties of Sb2Se3, preferential growth of Sb4Se6 n rib bons along the [001] direction is best suited for effective charge collection. Hence, grain orientation of Sb2Se3 films was studied more closely via measurement of pole figures by XRD and orientation distribution maps by electron backscatter diffraction EBSD . Although the measurements did not reveal strong preferred orientation, it was observed that the columnar Sb2Se3 growth enhanced texture along the [001] direction. Temperature dependent admittance spectroscopy TAS and capacitance voltage CV profiling were performed on the seed assisted TiO2 Sb2Se3 solar cell to evaluate carrier density and deep defects in the Sb2Se3 absorber. TAS study revealed a deep defect with activation energy of 0.39 eV. CV profiles indicated that the density of defects could be as high as 1017 c

    Ferromagnetic ordering in La 0.7

    Get PDF

    Towards a ‘Long View’: Historical Perspectives on the Scaling and Replication of Social Ventures

    Get PDF
    Social ventures are now widely regarded as playing an essential role in addressing persistent and pervasive societal challenges. This insight has prompted an active search for readily-scaleable and replicable business models. However, relatively little consideration has been given to the longer-term growth and performance of these hybrid organizational forms. This paper examines how historically-informed research might enhance our understanding of growth processes. It considers the conceptualization of organizational growth in social ventures and the relevance of prevailing constructs. The explanatory potential of ‘long view’ approaches examined by applying three constructs, opportunity recognition, entrepreneurial adjustment, and institutional structure, in a comparative historical analysis of two British social ventures

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ−2\lambda^{-2} and λ2\lambda^2, with λ≃0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    Antiperiodic dynamical 6-vertex model I: Complete spectrum by SOV, matrix elements of the identity on separate states and connections to the periodic 8-vertex model

    Full text link
    The spin-1/2 highest weight representations of the dynamical 6-vertex and the standard 8-vertex Yang-Baxter algebra on a finite chain are considered in this paper. For the antiperiodic dynamical 6-vertex transfer matrix defined on chains with an odd number of sites, we adapt the Sklyanin's quantum separation of variable (SOV) method and explicitly construct SOV representations from the original space of representations. We provide the complete characterization of eigenvalues and eigenstates proving also the simplicity of its spectrum. Moreover, we characterize the matrix elements of the identity on separated states by determinant formulae. The matrices entering in these determinants have elements given by sums over the SOV spectrum of the product of the coefficients of separate states. This SOV analysis is not reduced to the case of the elliptic roots of unit and the results here derived define the required setup to extend to the dynamical 6-vertex model the approach recently developed in [1]-[5] to compute the form factors of the local operators in the SOV framework, these results will be presented in a future publication. For the periodic 8-vertex transfer matrix, we prove that its eigenvalues have to satisfy a fixed system of equations. In the case of a chain with an odd number of sites, this system of equations is the same entering in the SOV characterization of the antiperiodic dynamical 6-vertex transfer matrix spectrum. This implies that the set of the periodic 8-vertex eigenvalues is contained in the set of the antiperiodic dynamical 6-vertex eigenvalues. A criterion is introduced to find simultaneous eigenvalues of these two transfer matrices and associate to any of such eigenvalues one nonzero eigenstate of the periodic 8-vertex transfer matrix by using the SOV results. Moreover, a preliminary discussion on the degeneracy of the periodic 8-vertex spectrum is also presented.Comment: 36 pages, main modifications in section 3 and one appendix added, no result modified for the dynamical 6-vertex transfer matrix spectrum and the matrix elements of identity on separate states for chains with an odd number of site
    • …
    corecore