1,590 research outputs found

    Influence of Hydrodynamic Interactions on the Kinetics of Colloidal Particle's Adsorption

    Full text link
    The kinetics of irreversible adsorption of spherical particles onto a flat surface is theoretically studied. Previous models, in which hydrodynamic interactions were disregarded, predicted a power-law behavior t−2/3t^{-2/3} for the time dependence of the coverage of the surface near saturation. Experiments, however, are in agreement with a power-law behavior of the form t−1/2t^{-1/2}. We outline that, when hydrodynamic interactions are considered, the assymptotic behavior is found to be compatible with the experimental results in a wide region near saturation.Comment: 4 pages, 1 figures, Phys. Rev. Lett. (in press

    Thermal X-Ray Pulses Resulting From Pulsar Glitches

    Get PDF
    The non-spherically symmetric transport equations and exact thermal evolution model are used to calculate the transient thermal response to pulsars. The three possible ways of energy release originated from glitches, namely the `shell', `ring' and `spot' cases are compared. The X-ray light curves resulting from the thermal response to the glitches are calculated. Only the `spot' case and the `ring' case are considered because the `shell' case does not produce significant modulative X-rays. The magnetic field (B⃗\vec B) effect, the relativistic light bending effect and the rotational effect on the photons being emitted in a finite region are considered. Various sets of parameters result in different evolution patterns of light curves. We find that this modulated thermal X-ray radiation resulting from glitches may provide some useful constraints on glitch models.Comment: 48 pages, 20 figures, submitted to Ap

    Adsorption of colloidal particles in the presence of external field

    Get PDF
    We present a new class of sequential adsorption models in which the adsorbing particles reach the surface following an inclined direction (shadow models). Capillary electrophoresis, adsorption in the presence of a shear or on an inclined substrate are physical manifestations of these models. Numerical simulations are carried out to show how the new adsorption mechanisms are responsible for the formation of more ordered adsorbed layers and have important implications in the kinetics, in particular modifying the jamming limit.Comment: LaTex file, 3 figures available upon request, to appear in Phys.Rev.Let

    Uncertainty-driven regulation of learning and exploration in adolescents:A computational account

    Get PDF
    Healthy adults flexibly adapt their learning strategies to ongoing changes in uncertainty, a key feature of adaptive behaviour. However, the developmental trajectory of this ability is yet unknown, as developmental studies have not incorporated trial-to-trial variation in uncertainty in their analyses or models. To address this issue, we compared adolescents' and adults' trial-to-trial dynamics of uncertainty, learning rate, and exploration in two tasks that assess learning in noisy but otherwise stable environments. In an estimation task-which provides direct indices of trial-specific learning rate-both age groups reduced their learning rate over time, as self-reported uncertainty decreased. Accordingly, the estimation data in both groups was better explained by a Bayesian model with dynamic learning rate (Kalman filter) than by conventional reinforcement-learning models. Furthermore, adolescents' learning rates asymptoted at a higher level, reflecting an over-weighting of the most recent outcome, and the estimated Kalman-filter parameters suggested that this was due to an overestimation of environmental volatility. In a choice task, both age groups became more likely to choose the higher-valued option over time, but this increase in choice accuracy was smaller in the adolescents. In contrast to the estimation task, we found no evidence for a Bayesian expectation-updating process in the choice task, suggesting that estimation and choice tasks engage different learning processes. However, our modeling results of the choice task suggested that both age groups reduced their degree of exploration over time, and that the adolescents explored overall more than the adults. Finally, age-related differences in exploration parameters from fits to the choice data were mediated by participants' volatility parameter from fits to the estimation data. Together, these results suggest that adolescents overestimate the rate of environmental change, resulting in elevated learning rates and increased exploration, which may help understand developmental changes in learning and decision-making

    Effects of advice on experienced-based learning in adolescents and adults

    Get PDF
    Recent studies that compared effects of pre-learning advice on experience-based learning in adolescents and adults have yielded mixed results. Previous studies on this topic used choice tasks in which age-related differences in advice-related learning bias and exploratory choice behavior are difficult to dissociate. Moreover, these studies did not examine whether effects of advice depend on working memory load. In this preregistered study (in adolescents [13-15 years old] and adults [18-31 years old]), we addressed these issues by factorially combining advice and working memory load manipulations in an estimation task that does not require choices and hence eliminates the influence of known age-related differences in exploration. We found that advice guided participants' initial estimates in both age groups. When advice was correct, this improved estimation performance, especially in adolescents when working memory load was high. When advice was incorrect, it had a longer-lasting effect on adolescents' performance than on adults' performance. In contrast to previous findings in choice tasks, we found no evidence that advice biased learning in either age group. Taken together, our results suggest that learning in an estimation task improves between adolescence and adulthood but that the effects of advice on learning do not differ substantially between adolescents and adults

    Impaired learning to dissociate advantageous and disadvantageous risky choices in adolescents

    Get PDF
    Adolescence is characterized by a surge in maladaptive risk-taking behaviors, but whether and how this relates to developmental changes in experience-based learning is largely unknown. In this preregistered study, we addressed this issue using a novel task that allowed us to separate the learning-driven optimization of risky choice behavior over time from overall risk-taking tendencies. Adolescents (12–17 years old) learned to dissociate advantageous from disadvantageous risky choices less well than adults (20–35 years old), and this impairment was stronger in early than mid-late adolescents. Computational modeling revealed that adolescents’ suboptimal performance was largely due to an inefficiency in core learning and choice processes. Specifically, adolescents used a simpler, suboptimal, expectation-updating process and a more stochastic choice policy. In addition, the modeling results suggested that adolescents, but not adults, overvalued the highest rewards. Finally, an exploratory latent-mixture model analysis indicated that a substantial proportion of the participants in each age group did not engage in experience-based learning but used a gambler’s fallacy strategy, stressing the importance of analyzing individual differences. Our results help understand why adolescents tend to make more, and more persistent, maladaptive risky decisions than adults when the values of these decisions have to be learned from experience
    • …
    corecore