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Recent studies that compared effects of pre-learning advice on
experience-based learning in adolescents and adults have yielded
mixed results. Previous studies on this topic used choice tasks in
which age-related differences in advice-related learning bias and
exploratory choice behavior are difficult to dissociate. Moreover,
these studies did not examine whether effects of advice depend
on working memory load. In this preregistered study (in adoles-
cents [13–15 years old] and adults [18–31 years old]), we
addressed these issues by factorially combining advice and work-
ing memory load manipulations in an estimation task that does
not require choices and hence eliminates the influence of known
age-related differences in exploration. We found that advice
guided participants’ initial estimates in both age groups. When
advice was correct, this improved estimation performance, espe-
cially in adolescents when working memory load was high.
When advice was incorrect, it had a longer-lasting effect on adoles-
cents’ performance than on adults’ performance. In contrast to pre-
vious findings in choice tasks, we found no evidence that advice
biased learning in either age group. Taken together, our results
suggest that learning in an estimation task improves between ado-
lescence and adulthood but that the effects of advice on learning do
not differ substantially between adolescents and adults.

� 2021 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jecp.2021.105230&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jecp.2021.105230
http://creativecommons.org/licenses/by/4.0/
mailto:m.jepma@uva.nl
https://doi.org/10.1016/j.jecp.2021.105230
http://www.sciencedirect.com/science/journal/00220965
http://www.elsevier.com/locate/jecp


M. Jepma, J.V. Schaaf, I. Visser et al. Journal of Experimental Child Psychology 211 (2021) 105230
Introduction

Adaptive behavior requires people to quickly learn the value of new stimuli and events in their
environment. Stimulus–outcome and action–outcome contingencies can be learned through direct
personal experience but also via information from others (e.g., instructions, advice). These two means
of acquiring knowledge often co-occur, for example, when a friend recommends a specific restaurant
after which you visit that restaurant yourself or when you first hear your partner’s opinion about his
or her family members and then get to know them yourself. In such situations, how does the informa-
tion you received beforehand influence your own subsequent learning process?

This question is particularly relevant in the context of development. Children and adolescents fre-
quently receive instructions and advice from their parents and teachers, and are highly sensitive to
their peers’ opinions (especially adolescents) (Albert, Chein, & Steinberg, 2013; Brown & Larson,
2009; Rodman, Powers, & Somerville, 2017), while at the same time learning from their own experi-
ences. There is extensive evidence for developmental changes in experience-based learning in the
absence of advice (Christakou et al., 2013; Cohen et al., 2010; Crone, Jennings, & Van der Molen,
2004; Eppinger, Mock, & Kray, 2009; Hauser, Iannaccone, Walitza, Brandeis, & Brem, 2015; Javadi,
Schmidt, & Smolka, 2014; Jepma, Schaaf, Visser, & Huizenga, 2020; Palminteri, Kilford, Coricelli, &
Blakemore, 2016; van den Bos, Cohen, Kahnt, & Crone, 2012; van Duijvenvoorde, Zanolie,
Rombouts, Raijmakers, & Crone, 2008), but if and how the influence of advice on experience-based
learning changes across development is still largely unknown (but see Decker, Lourenco, Doll, &
Hartley, 2015; Lourenco et al., 2015; Rodriguez Buritica, Heekeren, & van den Bos, 2019). More insight
into this topic may help to increase the efficacy of educational programs and public health campaigns
aimed at specific age groups.

Previous studies in which adult participants were advised to choose a particular option before
starting an instrumental reward learning task found that participants’ choices were biased toward
the advised option (Biele, Rieskamp, & Gonzalez, 2009; Biele, Rieskamp, Krugel, & Heekeren, 2011;
Doll, Hutchison, & Frank, 2011; Doll, Jacobs, Sanfey, & Frank, 2009; Staudinger & Buchel, 2013). Fur-
thermore, this advice-following behavior often persisted over time even if it yielded suboptimal out-
comes (Decker et al., 2015; Doll et al., 2009; Staudinger & Buchel, 2013). These findings may reflect
several not mutually exclusive effects of advice on experience-based learning. First, advice is likely
to affect people’s initial expectations, such that positively advised options start out with a higher
expected value than non-advised options (Biele et al., 2011; Rodriguez Buritica et al., 2019). Second,
advice may bias experience-based learning in two ways. This bias can operate on the expectation-
updating process by increasing the learning rate for advice-consistent outcomes relative to advice-
inconsistent outcomes (Doll et al., 2009, 2011). Such a ‘‘confirmation bias” results in an overvaluation
of advised options, which can explain persistent advice following despite contradictory evidence.
Alternatively, advice can also bias learning by affecting outcome evaluation. Specifically, a more pos-
itive evaluation of outcomes from advised options—which has been referred to as an ‘‘outcome
bonus”—can produce a persistent overvaluation of these options as well (Biele et al., 2011). Note that
although the outcome bonus and confirmation bias mechanisms are conceptually different—affecting
the input to the expectation-updating process and the updating process itself, respectively—they bias
the learning process in similar ways and hence are difficult to dissociate. Third, people may be more
confident about the value of advised options, corresponding to more precise expectations. In a Baye-
sian framework, more precise expectations, or priors, are updated less in response to prediction errors
(i.e., lower learning rates). Thus, instead of biasing learning, advice may suppress, or slow down,
experience-based learning by increasing the precision of expectations (Li, Delgado, & Phelps, 2011).

Importantly, people’s choice behavior not only depends on the expected values of advised versus
non-advised options but also depends on how these values are translated into choices. A key element
of this choice process is the trade-off between exploiting the option with the highest expected value
and exploring alternative apparently suboptimal options (Cohen, McClure, & Yu, 2007). If advised
options start out with a higher expected value than non-advised options, people with a strong
exploitative choice strategy will tend to exclusively choose the advised option, which is beneficial
in case of correct advice. In contrast, people with a more exploratory choice strategy will sometimes
2
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choose non-advised options as well, which is beneficial in case of incorrect advice because it will facil-
itate the discovery of other more rewarding choice options. Thus, because people’s degree of explo-
ration influences their advice-following behavior, individual differences in advice-driven
modulation of learning can be difficult to disentangle from individual differences in exploration. This
is especially problematic when studying differences between experimental conditions or groups; if
these differ in advice-following behavior, it is hard to determine whether this is due to differences
in advice effects on the learning process, differences in exploration, or both.

With regard to developmental changes, several studies have shown that children and adolescents
make more exploratory choices than adults in both the absence and presence of advice (Christakou
et al., 2013; Decker et al., 2015; Javadi et al., 2014; Jepma et al., 2020; Rodriguez Buritica et al.,
2019; Spear, 2000). To our knowledge, three previous studies have examined how incorrect advice
(Decker et al., 2015; Lourenco et al., 2015) and correct advice (Rodriguez Buritica et al., 2019) affect
subsequent learning and decision making in different age groups. One study found that choices of chil-
dren and adolescents were driven more by the actual experienced outcomes and less by incorrect
advice than choices of young adults (Decker et al., 2015). Computational models applied to the choice
data from this study provided evidence for a confirmation bias in learning in adults but not in learning
in children and adolescents. The second study, using an incorrect-advice manipulation in a more cog-
nitively demanding task—including four stimulus pairs and two advised stimuli—did not find an over-
all advice-related bias in either adolescents or young adults (the authors did not test children) and
found no differences between these age groups (Lourenco et al., 2015). The third study showed that
correct advice had a stronger effect on the initial expected values in adolescents than in children
and young adults but found no age-related differences in advice effects on the subsequent learning
process (Rodriguez Buritica et al., 2019). Thus, the three previous developmental studies that exam-
ined advice effects on experience-based learning yielded mixed results. Together, their findings sug-
gest that whether and how effects of pre-learning advice differ between adolescents and adults
may depend on the accuracy of the advice as well as on the cognitive load of the task.

Of the three developmental studies reviewed above, two studies used computational models to
infer the learning and decision mechanisms underlying participants’ choice behavior (Decker et al.,
2015; Rodriguez Buritica et al., 2019). Importantly, in addition to age-related changes in the effects
of advice on the learning process (Decker et al., 2015) and on initial expectations (Rodriguez
Buritica et al., 2019), the model-based analyses from both these studies revealed a higher degree of
choice randomness (or exploration) in children and adolescents as compared with adults. Although
the computational models used in these studies are designed to tease apart learning and choice mech-
anisms, the model parameters that control these two mechanisms often trade off against each other to
some extent (Daw, 2011). Such parameter trade-offs are also present in models that include advice
effects on learning (see Supplemental Text 1 and Supplemental Fig. 1 in the online supplementary
material for simulation results), which is problematic when interpreting differences in estimated
advice effects between groups of participants if these groups also differ in choice randomness or
exploration.
Fig. 1. Outline of a trial in the Set Size 1 version of the task.
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The current study

The aim of the current study was to study potential age-related differences in advice effects on
learning unconfounded by age-related differences in exploration. To this end, we tested adolescents
aged 12 to 15 years (from the second year of high school) and adults aged 18 to 31 years (the two
age groups were matched with regard to educational level) on a learning task that does not involve
choices but requires participants to explicitly estimate the value of stimuli based on sequentially
observed outcomes. Thus, this task directly measures the expectation-updating process unconfounded
by exploration. Specifically, during our task, participants repeatedly estimated the value (operational-
ized as the probability of winning) of a stimulus. Following each estimate, participants observed one
binary outcome (win or no-win outcome), after which they could update their estimate. Participants
also rated their certainty in each estimate. Whereas studies using instrumental learning tasks typically
infer participants’ learning rate and trial-by-trial changes in expected value from choice data, our task
provides a direct measure of these variables (also see Method).

We examined effects of correct and incorrect advice about stimuli’s win probability—received from
an alleged same-aged peer prior to the first observation—on estimation accuracy and certainty ratings.
Then, to shed more light on how advice affects estimation performance and whether this differs
between adolescents and adults, we examined the effects of advice on participants’ initial estimates
and on their learning rates. In the analysis on learning rate, we specifically examined evidence for
(age-related differences in) a confirmation bias. Finally, we reasoned that the impact of advice may
be stronger in more demanding learning tasks such as those with a high working memory load. Fur-
thermore, given that working memory function and its underlying neural circuitry continue to mature
into late adolescence (Geier, Garver, Terwilliger, & Luna, 2009; Huizinga, Dolan, & van der Molen,
2006; Kwon, Reiss, & Menon, 2002; Luna, 2009; McAuley & White, 2011), this dependence on working
memory load may be stronger for adolescents than for adults. To test these ideas, we also varied the
working memory load of the learning task—by manipulating the number of stimuli that participants
learned about concurrently (i.e., the set size)—and tested for the effect of set size, and its interaction
with age group, in all our analyses.
Method

Preregistration

We preregistered our main research questions, analyses, and exclusion criteria using AsPredicted
(http://aspredicted.org/blind.php?x=cp9rd4). Non-preregistered analyses are treated as exploratory
and are reported in the supplementary material.
Participants

In total, 103 young adults (age range = 18–31 years; 58% female) and 163 adolescents (age range =
12–15 years; 65% female) participated in the study. Adults were students or former students at Dutch
universities or colleges of higher professional education. Adolescents were in the second year of high
school of the Dutch school system (pre-university or higher general secondary education); hence, the
vast majority of adolescents were 13 or 14 years old, with a few exceptions being 12 or 15 years old.
Adult participants received 5 euros or course credits, plus a variable bonus of 1 to 3 euros, for their
participation. Adolescent participants received 5 chocolate coins, plus a variable bonus of 1 to 3 choco-
late coins, for their participation. Adult participants provided written informed consent. Primary care-
takers of the adolescent participants were informed about the experiment and had the opportunity to
refuse the participation of their children (passive consent). All procedures were approved by the local
ethics committee.

In total, 32 adolescents and 5 adults did not complete the task because of technical problems (in-
terruptions of the task, which was run online, mostly due to unstable internet connections at the
schools where the adolescents were tested). Of the remaining participants, 11 adolescents and 10
4
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adults were excluded prior to analysis because they reported a history of psychiatric or neurological
disorders and/or use of alcohol or recreational drugs on the test day. This left us with data from 120
adolescents (3 12-year-olds, 81 13-year-olds, 35 14-year-olds, and 1 15-year-old; 67% female) and 88
adults (Mage = 22.1 years, SD = 3.2, range = 18–31; 60% female).

In addition, we preregistered to exclude participants who used negative learning rates (i.e., reduced
their estimated win probability after a win outcome or increased their estimated win probability after
a no-win outcome) on more than 30% of the trials because this behavior is indicative of poor task
understanding or the use of a gambler’s fallacy-like strategy (see the first Results section and Discus-
sion). Note that this exclusion criterion does not consider when the trials with negative learning rates
occurred (but see Supplemental Text 2 for an analysis on this issue). Based on this criterion, we
excluded 49 adolescents and 8 adults. Thus, the remaining sample consisted of 71 adolescents (36
and 35 in the Set Size 1 and Set Size 2 versions, respectively; 47 13-year-olds, 23 14-year-olds, and
1 15-year-old; 64% female) and 80 adults (39 and 41 in the Set Size 1 and Set Size 2 versions, respec-
tively; Mage = 22.3 years, range = 18–31; 65% female).

As preregistered, we performed our analyses on this final sample. However, we also repeated the
analyses on estimation accuracy without excluding participants according to our gambler’s fallacy cri-
terion. These analyses are reported in Supplemental Text 2; we summarize their results here. Includ-
ing participants with a gambler’s fallacy-like strategy resulted in stronger effects of age group on
overall estimation performance. This can be explained by the fact that many more adolescents than
adults used this maladaptive strategy; hence, including these participants impaired average estima-
tion accuracy more in the adolescent group. Including these participants did not change the Age
Group � Advice interaction or the Age Group � Advice � Set Size interaction, suggesting that the
effects of advice did not differ substantially between the adolescents who did use a gambler’s
fallacy-like strategy and those who did not.

General procedure

Adolescent participants were tested in a classroom or computer room at their high school in groups
of approximately 20. Adult participants were tested in a computer room at the university in groups of
2 to 5 (we did not test the adults in larger groups for practical reasons). At least one experimenter was
always present in the testing room as well. Participants performed the experiment individually on a
laptop or PC. Before starting the probabilistic learning task, participants were informed about the task
structure and procedure by means of computerized instructions and performed a practice block (with-
out advice). In the instructions, participants were encouraged to raise their hand and (softly) ask the
experimenter for clarification if they did not understand the instructions or had questions about the
task. At the end of the test session—which lasted 30 to 45 min—participants were debriefed about the
aim of the experiment and were informed that the advice they had received did not actually come
from other participants but rather had been preprogrammed by the experimenters.

Probabilistic learning task

In this task, participants observed sequences of binary outcomes—win and no-win outcomes.
Before each new observation, participants estimated the probability of a win outcome and rated
how certain they were about this estimate (Fig. 1). To make the estimation of probabilities more intu-
itive, we embedded the task in a cover story according to which the outcomes were coins that were
drawn from specific boxes displayed on a computer screen. We instructed participants that each
box contained 100 coins, which consisted of a mixture of euro coins (win outcomes; depicted as coins
with a euro sign) and fake coins (no-win outcomes; depicted as coins with a cross). The proportion of
euro coins was unknown, but on each trial one coin was drawn from a box and was revealed to par-
ticipants. Participants were also instructed that after a coin was drawn, it was returned to the box and
all coins were shuffled for the next trial. Unbeknownst to participants, the percentage of euro coins
drawn from a specific box was always 25%, 50%, or 75%.

Participants won 1 point each time a euro coin was drawn but not when a fake coin was drawn. We
instructed participants that their total number of points won would be translated into a bonus to be
5
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received at the end of the test session (in reality, this bonus was 1 euro and 1 chocolate coin for each
adult and adolescent, respectively). Participants were also instructed that they could not influence the
proportion of win outcomes. To incentivize estimation accuracy, participants earned a second bonus—
0, 1, or 2 euros or chocolate coins for adults and adolescents, respectively—depending on how close
their estimates were to the actual proportion of win outcomes.

Trial outline
At the start of each trial, participants estimated the number of euro coins inside the current box—

because each box contained 100 coins, this corresponds to the overall win probability for the current
box multiplied by 100—by typing a number on the keyboard (self-paced). Participants’ estimate
appeared underneath the (relevant) box, and participants confirmed their estimate by pressing the
Enter key. If the typed number was not in the range of 0 to 100, an error message appeared and par-
ticipants needed to change their answer to a number from 0 to 100 before they could continue. Par-
ticipants then rated their certainty about this estimate on a vertical scale from 0 to 10 with lower and
upper anchors of completely uncertain and completely certain, respectively, using the mouse (self-
paced). Next, 700 ms later, one coin was revealed inside the box and then moved up (outside the
box) and down (back inside the box), as if it was drawn from the box and then returned. This coin-
drawing animation took 1.5 s, after which the next trial started and participants could update their
estimate.

Actual win probabilities
Participants estimated the win probabilities of 10 different boxes—each with a unique color—and

observed 16 draws per box. For a given box, one, two, or three of every four draws was a euro coin
corresponding to win probabilities of .25, .50, or .75. Within each series of four draws, the order of euro
and fake coin draws was random. Thus, although participants were instructed that outcomes were
sampled completely randomwith replacement, the actual sampling was randomwithout replacement
within each series of four outcomes. This was done to prevent differences in actual experienced win
probabilities between participants. Note that participants were asked to estimate the overall number
of euro coins inside the current box, not the probability that the next draw would be a euro coin.
Therefore, in the unlikely case that participants detected the pseudorandom nature of the sampling
procedure, this should not affect the optimal estimation strategy (e.g., a gambler’s fallacy-like strategy
would still be maladaptive).

Advice manipulation
Participants learned about six boxes—with win probabilities of .25, .50, and .75—in the absence of

advice. For two other boxes, participants received incorrect advice. The actual win probability for both
these boxes was .50, but the advised win probabilities were .31–.40 (too low) and .61–.70 (too high)
for one box each. These two incorrect-advice conditions are well-suited to test for a confirmation bias
in learning (see the ‘‘Analysis” section). Finally, we included two boxes for which participants received
correct advice. The win probabilities of these boxes were .25 and .75, and the (correctly) advised win
probabilities were .21–.30 and .71–.80, respectively. Note that we did not aim to directly compare the
incorrect- and correct-advice conditions (which differed in actual win probability) with each other.
Instead, in our analyses on estimation accuracy and certainty ratings, we analyzed these two advice
conditions separately, comparing each with the corresponding no-advice condition (with identical
actual win probability).

We instructed participants that the advice came from same-aged peers—other participants who
previously completed the same task at another high school or university. For the boxes paired with
advice, an advice message was shown on the screen before the first outcome from that box was sam-
pled. This message contained the name of the alleged advisor (Lisa, Anna, Daan, or Sem) and the num-
ber of euro coins inside that box according to this advisor. The message remained on the screen
throughout the entire learning process for that box, such that it could not be forgotten and did not
tax working memory. A different advisor was introduced for each advice block, so all participants
encountered each of the four alleged advisors once. To increase the credibility of the advice manipu-
lation, participants were also asked to advise a future participant about the proportion of euro coins
6
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themselves following some of the blocks. They could select one of the following advice options: 0–10,
11–20, 21–30, 31–40, 41–50, 51–60, 61–70, 71–80, 81–90, or 91–100 euro coins.

Set size manipulation
To manipulate the working-memory load of the estimation task, we varied the number of boxes

that participants learned about in parallel between participants. Half of the participants in each age
group learned about one box at a time (Set Size 1 version); they completed 10 experimental blocks
(one box per block), and in each block they observed a sequence of 16 draws from the same box.
The other half of the participants learned concurrently about two different boxes (Set Size 2 version);
they completed five experimental blocks in which two boxes were presented at the left and right sides
of the screen, and in each block they observed 16 draws from each of these two boxes (i.e., 32 draws
per block in total). Thus, the number of boxes and the number of learning trials per box were identical
for the two set size versions. We constrained the order of draws from the two boxes in the Set Size 2
version, such that participants never observed more than two draws from the same box in a row. On
each trial, the currently relevant box was indicated by means of a frame.

Table 1 summarizes the actual and advised win probabilities per block in each set size version. In
the Set Size 2 version, advice was received for one of the two boxes (in four blocks) or for none of the
boxes (in one block). When advice was received, this was specifically directed toward one of the
boxes; for clarity, the advice was displayed next to the relevant box and the color of that box was men-
tioned in the advice message. The two boxes with win probability .50 and incorrect advice were each
paired with a no-advice box with win probability .75, such that the learning conditions for these boxes
were identical except for the advice. The two boxes with correct advice (win probabilities .25 and .75)
were paired with a no-advice box of another win probability (.75 and .25, respectively). Finally, the Set
Size 2 version included one block with two no-advice boxes with win probabilities .50 and .75, respec-
tively. The blocks were completed in random order with one restriction, namely that the first advice
participants received was always correct. We used this restriction because it has been shown that ini-
tial advice-confirming experience potentiates the influence of subsequent incorrect advice (Staudinger
& Buchel, 2013).

Computation of trial-specific learning rate

We defined the prediction error (bd) on each trial t as the difference between the outcome (win and
no-win outcomes were coded as 1 and 0, respectively) and the participant’s estimate (divided by 100

to reflect estimated win probability):bdt = Outcomet � (Estimatet/100). Consequently, we estimated the
trial-specific learning rate (ba) as the change in estimated win probability of a given box across two
successive trials, namely trial t and trial t + 1, divided by the prediction error on trial t: bat = (Estimatet+1-

� Estimatet)/bdt . Note that this corresponds to the definition of learning rate according to standard
reinforcement learning models (Sutton & Barto, 1998).

Analysis

Multilevel regression analyses
We performed a series of preregistered multilevel regression analyses on trial-specific estimation

accuracy (operationalized as absolute estimation error, i.e., |estimated � actual win probability|), cer-
tainty ratings,1 initial estimates, and learning rate (ba) using the nlme package in R (Pinheiro, Bates,
DebRoy, & Sarkar, 2019). Random intercepts and slopes (separately for each age group and set size ver-
sion) were modeled in all analyses, covariances between random effects were fixed to 0, and correlation
between error terms across trials was considered by specifying first-order autoregression. If a model
failed to converge, only random intercepts were estimated.

Unless indicated otherwise, we included trial (linear and quadratic effects modeled as two contin-
uous mean-centered, regressors), advice condition, and outcome (in the analysis on learning rate only)
1 The analyses on certainty are reported in Supplemental Text 5 because they are not of primary importance to the conclusions
of this study.
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Table 1
Overview of the different conditions in each set size version of the task.

Set Size 1
Actual win probability Advised win probability Number of blocks

.50 no advice 2

.25 no advice 2

.75 no advice 2

.50 .31–.40 (too low) 1

.50 .61–.70 (too high) 1

.25 .21–.30 (correct) 1

.75 .71–.80 (correct) 1

Set Size 2

Actual win probabilities Advised win probabilities Number of blocks

.50/.75 no advice/no advice 1

.50/.75 .31–.40 (too low)/no advice 1

.50/.75 .61–.70 (too high)/no advice 1

.25/.75 no advice/.71–.80 (correct) 1

.25/.75 .21–.30 (correct)/no advice 1
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as within-participants variables. How advice condition was modeled depended on the particular ques-
tion under study. In the analyses on the effects of correct advice on estimation accuracy and certainty,
we contrasted the correct-advice and no-advice conditions (with identical win probability). In the
analyses on the effects of incorrect advice on estimation accuracy and certainty, we contrasted the
incorrect-advice and no-advice conditions (with identical win probability). In the analysis on the
effects of advice on initial estimates, we included all correct- and incorrect-advice conditions and
modeled the linear effect of the advised win probability (whether or not advice was correct was irrel-
evant because the initial estimate was made before any outcomes had been observed). In the analysis
on the effects of advice on learning rate in which we tested for a confirmation bias, we contrasted the
too-high versus too-low advice conditions (i.e., the two incorrect-advice conditions). Age group
(adults vs. adolescents) and set size version (1 vs. 2) were included as between-participants variables
in all analyses.

In the analysis on learning rate, we excluded the last trial for each stimulus, and trials on which the

prediction error (bd) was 0 (<1% of all trials), because learning rate could not be computed on those tri-
als. In addition, we excluded trials on which the learning rate exceeded the 99th percentile or was
lower than the 1st percentile (calculated separately for each age group and set size version using
all conditions) because these extreme learning rates likely reflected typing errors (e.g., when a partic-
ipant accidentally typed ‘‘300 instead of ‘‘73”).
Non-preregistered, exploratory, analyses

In addition to the preregistered analyses, we performed exploratory analyses to examine (a) the
prevalence and effects of a gambler’s fallacy-like strategy (Supplemental Text 2), (b) potential age-
related differences within our adult group (Supplemental Text 3), (c) whether advice suppressed (in-
stead of biased) learning rate (Supplemental Text 4), and (d) the relationships between self-reported
certainty and learning rate (Supplemental Text 6). Results from these exploratory analyses are sum-
marized in the main text and fully described in the supplementary material.
Computational modeling

To examine the latent processes that may underlie the observed advice effects, we applied a series
of computational learning models (beta-binomial models) to the estimation data for the stimuli with
win probability .50 that were paired with no advice, too low advice, and too high advice, using a hier-
archical Bayesian approach. We compared several model versions that assumed no advice effects or
effects of advice on the initial estimates and/or update rates. Model recovery results indicate that
8
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our modeling procedure could accurately distinguish the advice effects implemented in our different
models (Supplemental Text 7C). A complete description of the different models and modeling meth-
ods can be found in Supplemental Text 7A.
Results

A gambler’s fallacy-like strategy is more prevalent in adolescents than in adults

A substantial subset of the participants we tested (41% of the adolescents and 9% of the adults after
exclusion due to technical problems, history of psychiatric/neurological disorders, or alcohol/drug use)
used negative learning rates on more than 30% of the trials—one of our preregistered exclusion crite-
ria. Thus, these participants often reduced their estimated win probability after a win outcome and
increased their estimated win probability after a no-win outcome, suggesting the use of a gambler’s
fallacy-like strategy instead of a learning strategy (see Discussion).

We performed non-preregistered and thus exploratory analyses to test whether and how (a) this
behavior differed between the two age groups and set size versions, (b) this behavior changed over
the course of the task, (c) estimation accuracy differed between the participants who showed this
behavior and those who did not, and (d) excluding participants who showed this behavior affected
age-related effects on estimation accuracy. These analyses are reported in Supplemental Text 2.
Importantly, the prevalence of a gambler’s fallacy-like strategy was higher in adolescents than in
adults but was independent of working memory load (Supplemental Text 2). Furthermore, in both
age groups, estimation accuracy was worse for the participants who used a gambler’s fallacy-like
strategy than for the participants who did not, confirming that this strategy was maladaptive (Supple-
mental Text 2). As preregistered, participants who showed gambler’s fallacy-like behavior were
excluded from further analysis.
Estimation error in the correct-advice versus no-advice conditions (win probability is .25 or .75)

In this analysis, we examined absolute estimation error in the correct-advice and no-advice condi-
tions (in which the win probability was .25 or .75) (Fig. 2A) and tested for effects of trial, advice, age
group, and set size. The statistics for all fixed effects are reported in Supplemental Table 1; here we
focus on the age-related effects. Although both age groups became more accurate as more outcomes
were observed (i.e., they learned), estimation error decreased slower in the adolescents [i.e., adoles-
cents learned slower; Age Group � Trial–Linear interaction, t(147) = 2.3, p = .02]. In both age groups,
estimation error was lower when correct advice was present, especially during early trials (in the
beginning of learning). Finally, there was an Age Group � Set Size � Advice interaction, t
(147) = 2.9, p = .004, reflecting that adolescents benefited more from correct advice than adults, in par-
ticular when the working memory load was high. Put differently, the impaired performance in adoles-
cents relative to adults was most apparent in the absence of correct advice, in particular when the
working memory load was high.
Estimation error in the incorrect-advice versus no-advice conditions (win probability is .50)

We performed the same analysis on absolute estimation error in the incorrect-advice and no-advice
conditions in which the actual win probability was .50 (Fig. 2B). The statistics for all fixed effects are
reported in Supplemental Table 2; here we focus again on the age-related effects. Estimation error was
overall larger in the adolescents than in the adults [main effect of age group, t(147) = 2.2, p = .03]. The
only other age-related effect was an Age Group � Advice � Trial–Linear interaction, t(147) = 3.6,
p < .001, reflecting that estimation accuracy was affected by the incorrect advice relatively longer in
the adolescents than in the adults. There were no significant interactions between age group and
set size (Supplemental Table 2).
9



Fig. 2. Mean estimated win probability as a function of trial, actual and advised win probability, age group, and set size for the correct-advice and no-advice conditions with win
probabilities .25 and .75 (A) and the incorrect-advice and no-advice conditions with win probability .50 (B). Error bars indicate standard errors.
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Fig. 3. Mean estimated win probability on Trial 1 as a function of advised win probability, age group, and set size. The middle bar is the no-advice condition. Error bars indicate standard
errors.
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Fig. 4. Learning rate for stimuli with win probability .50 as a function of outcome (win vs. no win) and advised win probability (too high vs. too low) predicted by the confirmation bias
hypothesis (left panel) and observed in each age group and set size version (right panel). Error bars indicate standard errors. See Supplemental Fig. 4 for the trial-specific learning rates in
all conditions.
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A comparison of adolescents, 18- to 21-year-olds, and 22- to 31-year-olds
Some previous studies found that resistance to peer influence (Gardner & Steinberg, 2005) and

working memory function (Kwon et al., 2002; McAuley &White, 2011) continue to develop until early
adulthood (early 20s). Therefore, it is possible that the effects of advice and set size differed between
the younger and older adults within our adult group. To test this idea, we repeated the analyses on
estimation error described above, but this time (a) comparing the younger adults (18–21 years old)
and older adults (22–31 years old) with each other and (b) comparing each of these two adult groups
with the adolescent group in separate analyses. These non-preregistered and hence exploratory anal-
yses are reported in Supplemental Text 3 and Supplemental Fig. 3. To summarize their results, we
found some evidence that estimation performance continues to improve during early adulthood, in
particular when correct advice is not available and working memory load is high. In addition, the
results suggest that susceptibility to incorrect advice decreases between adolescence and early adult-
hood but does not decrease further after 18 years of age.

The analyses on estimation error indicate that (a) correct advice improved estimation performance,
especially in the adolescents when working memory load was high, and (b) incorrect advice had a
longer-lasting effect on the adolescents’ estimation performance than on that of the adults. To shed
more light on how advice affected performance in the two age groups, we next examined the effects
of advice on participants’ initial estimates (i.e., priors) and learning rates.
Advice guides initial estimates in both adolescents and adults

In this analysis, we examined the effects of advised win probability, age group, and set size on par-
ticipants’ initial estimates (on trial 1 before any outcome had been observed). Because the four advice
levels used in our task were .21–.30, .31–.40, .61.–.70, and .71–.80, the distance between the second
and third advice levels was three times as large as that between the first and second levels and that
between the third and fourth levels. Therefore, we coded the four advice levels as �2.5, �1.5, 1.5, 2.5
(i.e., linear effect of advised win probability).

Initial win probability estimates increased as a function of the advised win probability, t
(147) = 11.5, p < .001) (Fig. 3), and this effect did not interact with age group or set size (ps > .06). Thus,
participants used the advice to guide their initial estimates, but this effect did not differ between the
adolescents and adults.
Advice does not bias learning in either adolescents or adults

We next examined evidence for a confirmation bias in learning, that is, stronger updating when
new evidence is consistent than when it is inconsistent with received advice. In our task, a confirma-
tion bias would be reflected in higher learning rates for win outcomes than for no-win outcomes when
the advised win probability is high and in higher learning rates for no-win outcomes than for win out-
comes when the advised win probability is low. In other words, a confirmation bias would produce an
interaction between advised win probability (high vs. low) and outcome (win vs. no-win outcome) on
learning rate (Fig. 4, left panel). To test this prediction, we focused our learning rate analysis on the
stimuli with win probability .50 that were paired with either too-low advice (.31–.40) or too-high
advice (.61–70). These stimuli are well-suited to test for a confirmation bias because their advised
win probabilities are in opposite directions from the true win probability, but they are otherwise iden-
tical and contain an equal number of win and no-win outcomes. Our effects of interest in this analysis
were the Advice (too low vs. too high) � Outcome (win vs. no win) interaction and the higher-order
interactions with age group, set size, and trial. Therefore, we modeled the effects of outcome, advice,
age group, set size, and trial as well as all interactions.

There were no main or interaction effects of advice and outcome (ps > .20) (Fig. 4, right panel) and
no higher-order interactions with age group, set size, or trial (all ps > .15). This implies that a confir-
mation bias was absent and that there were no differential effects of age group or set size either. Thus,
advice did not result in a confirmation bias in learning in either the adults or adolescents, regardless of
working memory load.
13
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Advice suppresses learning rate during early trials in adolescents and adults

Finally, in a non-preregistered and hence exploratory analysis, we examined whether advice sup-
pressed learning rate regardless of the outcome. In this analysis, we included all advice conditions and
contrasted the advice (correct and incorrect combined) and the no-advice conditions. This analysis is
reported in Supplemental Text 3 and Supplemental Fig. 3. To summarize its main results, advice sup-
pressed learning rate during early trials, especially when working memory load was low. This suppres-
sive effect of advice on learning rate did not differ between the adolescents and adults. In addition, this
analysis revealed that the adults used overall higher learning rates than the adolescents.

Computational modeling results

Our modeling results corroborate the results from the regression analyses described above but do
not yield substantial additional insights. Therefore, we report the modeling results in the supplemen-
tary material (Supplemental Text 7B and Supplemental Figs. 8–12) and provide a short summary here.

The estimation data for both age groups and set size versions was best explained by a model in
which both initial estimates and update rates varied across the no-advice, too-high advice, and too-
low advice conditions. However, for the Set Size 1 version, there was no significant difference between
this model and the (second-best) model in which advice affected only the initial estimates. Supple-
mental Fig. 9 illustrates the fit of the winning model per age group and set size version. Parameter esti-
mates indicated that (a) initial win probability estimates were adjusted in the direction of the advice
in both age groups and set size versions (corroborating the results shown in Fig. 3) and (b) update
rates were higher in the absence of advice than in the presence of either too-low or too-high advice,
but only for the Set Size 1 version (in both age groups). This last finding corroborates the finding
described in the previous section that advice suppressed the learning rate during early trials, espe-
cially when working memory load was low (note that our models assumed constant update rates
and hence could not specifically capture advice effects during early trials).
Discussion

Previous studies have investigated effects of advice on experience-based learning using instrumen-
tal learning tasks, which involve repeated choices between two or more stimuli (Biele et al., 2011;
Decker et al., 2015; Doll et al., 2009; Lourenco et al., 2015; Rodriguez Buritica et al., 2019). In these
tasks, both exploratory choice behavior and advice-related modulation of the learning process can
influence advice following, which makes developmental differences in these two processes difficult
to disentangle. To isolate advice effects on the learning process, and to examine how these effects dif-
fer as a function of age and working memory load, we combined advice manipulations with a learning
task that does not involve choices but directly measures the expectation-updating process that is the
basis of reinforcement learning models.

To summarize our results, many participants—41% of the adolescents and 9% of the adults—used a
gambler’s fallacy-like strategy instead of a conventional learning strategy. After excluding those par-
ticipants, we found that adolescents learned slower than adults, especially when working memory
load was high. However, we found no prominent differences between the effects of advice in adoles-
cents and those in adults. First, advice directed participants’ initial estimates in both age groups, which
improved estimation performance when the advice was correct. Second, advice did not produce a con-
firmation bias in learning in either age group. In addition, our exploratory analyses suggested that
advice suppressed learning during early trials in both age groups. Below, we discuss these findings
in more detail.

Gambler’s fallacy is more prevalent in adolescents than in adults

A substantial proportion of the participants, especially in the adolescent group, frequently adjusted
their win probability estimate downward after a win outcome and upward after a no-win outcome,
14
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suggestive of a gambler’s fallacy (i.e., the belief that if something happened more often in the past, it
will happen less often in the future) (Jarvik, 1951). The use of a gambler’s fallacy-like strategy, instead
of a conventional learning strategy, was clearly maladaptive, as illustrated by the larger estimation
error in the participants who showed this behavior. Importantly, participants in our task estimated
the proportion of euro coins inside the current box (which corresponds to the overall win probability),
not the next outcome. Therefore, the use of a gambler’s fallacy would be maladaptive even if partici-
pants detected our semi-random sampling procedure (actual sampling was random without replace-
ment for every series of four trials, such that each box’s win frequency was stable throughout the
task). That many participants showed this behavior is in line with findings from a recent study in
which adult participants estimated probabilities of aversive outcomes; in that study, 18% of the par-
ticipants were excluded for following a gambler’s fallacy-like strategy (Wise, Michely, Dayan, & Dolan,
2019).

Our finding that this behavior was more prevalent in adolescents is consistent with previous find-
ings that susceptibility to the gambler’s fallacy decreases between childhood and young adulthood
(Fischbein & Schnarch, 1997; Klaczynski, 2001). Furthermore, it stresses the importance of taking this
fallacy into consideration when studying experience-based learning of outcome probabilities in devel-
opmental samples. In instrumental learning tasks, a gambler’s fallacy would manifest as win–switch
and lose–stay behaviors (switches to another choice option after a positive outcome and repetition of
the same choice after a negative outcome), which would impair performance in tasks with stable out-
come contingencies. Thus, it is an interesting question whether increased use of gambler’s fallacy
strategies in children and adolescents, relative to adults, may have contributed to previous findings
of worse learning performance in younger age groups.

Future studies could also focus on why this fallacy is more common prior to adulthood. In our
study, one possibility is that many adolescents falsely assumed that the sampled outcomes were
removed from the box. However, we explicitly instructed participants that each outcome was
returned into its box, and this was also illustrated on the screen on each trial. It could be that the ado-
lescents paid less attention to these instructions and animations and therefore were more likely to
misunderstand the task structure. Alternatively, the gambler’s fallacy may reflect a deep-rooted, pos-
sibly implicit bias that affects participants’ estimates despite a correct task understanding. If this is the
case, our findings suggest that the impact of this bias decreases between adolescence and adulthood.
To dissociate these possible causes of gambler’s fallacy-like behaviors, the use of comprehension ques-
tions prior to the task would be a valuable addition for future studies.
Developmental differences in susceptibility to advice

After excluding the participants who showed a gambler’s fallacy-like strategy, we found no salient
differences between the effects of advice in adults and those in adolescents. Advice directed initial
estimates and suppressed learning rate during early trials in both age groups, and neither age group
showed a confirmation bias. Because the current task isolated learning from exploration, the lack of
prominent age-dependent advice effects tentatively suggests that differential effects of advice in ado-
lescents and adults found in previous instrumental learning tasks (Decker et al., 2015; Rodriguez
Buritica et al., 2019) may have been driven in large part by age-related differences in exploration.
Future studies directly comparing the effects of advice manipulations in estimation and choice ver-
sions of otherwise identical learning tasks, administered to the same participants, are clearly needed
to test this hypothesis.

However, we found some subtle differences between the two age groups. Adolescents’ estimation
performance was affected longer by incorrect advice, which may be explained by the overall lower
learning rates in the adolescents. The adolescents also performed somewhat more poorly than the
adults, and this age difference was largest when correct advice was not available and working memory
load was high (Set Size 2). Thus, adolescents were more affected by a higher working memory load
than adults, but the presence of correct advice counteracted this age effect. It is possible that the load
of the Set Size 2 task exceeded the adolescents’ working memory capacity but not that of the adults,
which caused the adolescents to rely more on explicitly available information (in this case advice).
15



M. Jepma, J.V. Schaaf, I. Visser et al. Journal of Experimental Child Psychology 211 (2021) 105230
Consistent with this idea, there is substantial evidence that executive functions such as working mem-
ory continue to mature until late adolescence or even early adulthood, which is thought to reflect the
late functional and structural maturation of the prefrontal cortex (Casey, Jones, & Hare, 2008; Giedd
et al., 1999; Larsen & Luna, 2018). Alternatively, it is also possible that the adults were better able
to use associative learning or episodic memory processes to compensate for working memory limita-
tions and therefore were less dependent on the advice (Bornstein & Norman, 2017; Master et al., 2020;
Selmeczy, Fandakova, Grimm, Bunge, & Ghetti, 2019). Disentangling the developmental trajectories of
associative learning and different types of memory, and their respective contributions to learning per-
formance, are important objectives for future studies (Master et al., 2020).
Effects of advice on learning in estimation versus choice tasks

Previous studies that investigated advice effects in instrumental learning tasks using computa-
tional models have provided evidence for a confirmation bias in learning (or, similarly, for an outcome
bonus for advised options) (Biele et al., 2011; Doll et al., 2009). Moreover, adults were found to show a
stronger confirmation bias than children and adolescents (Decker et al., 2015). In our estimation task,
however, we found no evidence for a confirmation bias in either age group. As mentioned earlier, this
discrepancy between our findings and those of previous studies may reflect a trade-off between
parameters capturing advice-related learning bias and exploratory choice behavior in model-based
analyses of instrumental learning studies. Another possibility is that advice biases learning when peo-
ple learn from the outcomes of their own choices—perhaps to justify their choices for the advised
options or because advice following is intrinsically rewarding—but not when learning from passively
observed outcomes. In addition, in instrumental learning tasks, it suffices to estimate the relative win
probabilities of several choice options, whereas estimation tasks require participants to estimate exact
win probabilities. This arguably results in more explicit probability computations in estimation tasks,
which could reduce people’s susceptibility to learning biases.

Instead of biasing learning, our exploratory analysis revealed that advice suppressed learning dur-
ing initial trials, and this was particularly apparent when working memory load was low. Specifically,
in the absence of advice, learning rates were highest at the beginning of learning and then decreased
over time, whereas learning rates started off at a lower value and therefore decreased less over time
when advice was present. This suggests that advice rendered participants less willing to update their
estimates in response to the first observed outcomes. At a neurobiological level, this may be explained
by an advice-related suppression of brain systems that mediate experience-based learning. Consistent
with this idea, the availability of (predominantly) correct information about reward contingencies in
instrumental learning tasks has been shown to suppress outcome-evoked responses in regions
involved in stimulus evaluation and learning such as the ventral striatum and ventromedial prefrontal
cortex (Biele et al., 2011; Li et al., 2011). Whether advice also suppresses learning-related brain activ-
ity in passive learning tasks (without choices), such as the current task, remains to be tested in future
research.
Limitations and future directions

A limitation of our study is that we examined effects of incorrect advice only when the actual win
probability was .50, and the discrepancy between the actual and incorrectly advised win probabilities
was relatively small. Because participants’ initial estimates were around .50, we found no clear evi-
dence of learning for the stimuli win probability of .50 in the absence of advice, making it more dif-
ficult to detect advice effects. Therefore, an incorrect-advice manipulation for stimuli with win
probabilities other than .50 (e.g., actual win probability = .25 or .75 and advised win probability = .50
vs. no advice) or more extreme incorrect advice manipulations (e.g., actual win probability = .25 and
advised win probability = .75 vs. no advice) would be useful additions. We did not include such con-
ditions because we wanted to keep the task duration limited and for at least half of the advice to be
correct (to promote its trustworthiness), but including such conditions in future work could poten-
tially reveal learning biases that remained unnoticed in the current study. Another limitation of the
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current study is that, for practical reasons (the schools we collaborated with did not allow monetary
payments to be paid to the adolescents), the adolescent participants were incentivized with chocolate,
whereas the adults were incentivized with actual money, and it cannot be excluded that this influ-
enced the results. In addition, we focused on 12- to 15-year-old adolescents (the vast majority were
13 or 14 years old) and young adults. For a more complete understanding of the developmental tra-
jectory of advice-related effects on learning, and its dependence on working memory load, future
studies need to test participants from a wider age range and to examine (linear and nonlinear) age
effects on a continuous scale.

Another point that remained unaddressed in the current study is that people’s sensitivity to advice
may differ depending on their relationship to the advisor (e.g., whether advice is receive from a friend,
a teacher, or a nonhuman agent) (Goodyear et al., 2016; Lourenco et al., 2015). This could be explored
using adapted versions of our paradigm in which the identity of the (alleged) advisor is varied. Inter-
estingly, a previous study found that incorrect peer advice did not affect adolescents’ or young adults’
choices in an instrumental learning task, whereas incorrect advice from an older adult did bias the
choices of both age groups (Lourenco et al., 2015). This finding suggests that, at least in the context
of specific cognitive tasks, advice is more powerful when it comes from older adults, possibly because
older adults are assumed to have more general expertise. Indeed, people typically value and use expert
advice more than novice advice (Luan, Sorkin, & Itzkowitz, 2004; Meshi, Biele, Korn, & Heekeren, 2012;
Suen, Brown, Morck, & Silverstone, 2014). In our study, participants received advice from alleged
same-age peers who previously participated in the experiment. Thus, like the participants themselves,
the advisors could be considered novices on the task at hand. It is likely that advice from experts on
this task would result in stronger advice effects, possibly including a confirmation bias in learning. The
effects of advisor expertise on experience-based learning, and potential changes in these effects across
development, remain to be tested in future studies.
Conclusions

We showed that in a passive learning task, advice directs initial estimates and suppresses early
learning in both adults and adolescents but does not bias learning in either age group. Combined with
previous findings from instrumental learning studies, our results point to important differences in the
effects of advice on learning in passive (estimation) and active (instrumental) learning tasks. Further-
more, they suggest that developmental differences in susceptibility to pre-learning advice are less sali-
ent when learning is based on passively observed outcomes as compared with actively acquired ones.
Thus, taking the learning context into account may increase our understanding of how and when
advice shapes learning.
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