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a b s t r a c t

In two-armed bandit tasks participants learn which stimulus in a stimulus pair is associated with the
highest value. In typical reinforcement learning studies, participants are presented with several pairs
in a random order; frequently applied analyses assume each pair is learned in a similar way. When
tasks become more difficult, however, participants may learn some stimulus pairs while they fail to
learn other pairs, that is, they simply guess for a subset of pairs. We put forward the Reinforcement
Learning/Guessing (RLGuess) model — enabling researchers to model this learning and guessing
process. We implemented the model in a Bayesian hierarchical framework. Simulations showed that
the RLGuess model outperforms a standard reinforcement learning model when participants guess: Fit
is enhanced and parameter estimates become unbiased. An empirical application illustrates the merits
of the RLGuess model.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In reinforcement learning agents learn, by trial and error,
which actions to take in which states to maximize the total
amount of reward they receive (see e.g., Sutton & Barto, 2018). A
simplified version of the reinforcement learning problem is often
studied using n-armed bandit tasks. For example, in
two-armed bandit tasks participants learn which stimulus in a
stimulus pair is associated with the highest value. In general,
participants are presented with multiple stimulus pairs in a
randomized order (e.g., Frank, Seeberger, & O’Reilly, 2004; Kim,
Shimojo, & O’Doherty, 2006; Pessiglione, Seymour, Flandin, Dolan,
& Frith, 2006). In the analysis of such data, it is typically assumed
that each stimulus pair is learned in a similar way; accordingly,
computational models of this learning process typically apply the
same learning algorithm to each stimulus. However, if multiple
pairs have to be learned in parallel, the difficulty of the task
increases (Collins & Frank, 2012), which may result in learning for
some pairs, and in guessing for others. In this paper we propose
a model for such a combined learning and guessing process.

Typically responses from participants that guessed are ex-
cluded from the analyses by removing all data from partici-
pants that fail to reach the minimum learning criterion (see
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e.g., Decker, Otto, Daw, & Hartley, 2016; Doll, Jacobs, Sanfey, &
Frank, 2009; Eppinger, Mock, & Kray, 2009; Hämmerer, Li, Müller,
& Lindenberger, 2011; Niv et al., 2015). This is problematic as this
leads to data loss and therefore loss of power (Cohen, 1988). More
importantly, if data are removed, this provides an incomplete
description of behavior in reinforcement learning tasks. Yet, the
alternative approach in which guessing responses are included is
also not recommended as it may induce bias on the parameters
governing the learning process.

To address this, we propose the Reinforcement Learning/
Guessing (RLGuess) model — enabling researchers to model that
participants learn some stimulus pairs while they guess at others.
Our first goal is to compare the model fit of the RLGuess model to
a standard reinforcement learning model when the data contain
guessing responses and to test the parameter recovery capabili-
ties of the model. Our second goal is to examine whether bias is
induced on the parameters estimates in standard reinforcement
learning models when participants guess at some stimulus pairs
(i.e., when the model is misspecified).

The structure of the paper is as follows. First we briefly dis-
cuss the fundamentals of reinforcement learning models that
are currently applied and outline why guessing responses are
problematic in these models. Then we introduce the RLGuess
model, and present a parameter recovery study to assess the
performance of the RLGuess model and to examine the effects
of model misspecification on the parameter estimates. We also
apply the RLGuess model to existing data from a reinforcement

https://doi.org/10.1016/j.jmp.2019.102276
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learning task in which multiple stimulus pairs had to be learned
in parallel.

2. Reinforcement learning models

Commonly applied reinforcement learning models originate in
the Rescorla–Wagner Model (Rescorla & Wagner, 1972; Sutton &
Barto, 2018). In these models each person makes a series of binary
choices across trials t = {1, 2, . . . , T }. At each trial t the value
estimate Q of the chosen option is updated via the following rule:

Q (t + 1) = Q (t) + ηδ(t) (1)

with

δ(t) = R(t) − Q (t) (2)

where Q is the value estimate and η indicates the learning rate.
The prediction error δ is computed by subtracting the current
value estimate from the obtained reward R. People thus up-
date the value estimate by scaling the prediction error with the
learning rate and then adding this to the estimated value at the
previous trial. Learning rates close to 1 indicate that a person
makes fast adaptations based on prediction errors and learning
rates closer to 0 indicate slow adaptation. The value estimates
of both options are used to determine the probability to choose
either option. This probability is often computed via the following
softmax decision rule (Luce, 1959):

P (c(t) = 1) =
1

1 + exp(−β [Q1(t) − Q2(t)])
(3)

where P(c(t) = 1) is the probability to choose the first option
at trial t, Q1 is the value estimate of the first option and Q2 is
the value estimate of the second option. The parameter β is the
inverse temperature, a parameter that indicates to what extent a
person’s choice is guided by the difference in value estimates.

3. RLGuess model

The reinforcement learning model presented in Section 2 con-
tains two parameters to be estimated — learning rate and inverse
temperature. Both parameters are fixed across stimulus pairs. In
this way the model cannot account for participants that learned
some stimulus pairs and guessed at others. To overcome this
problem without excluding data, we augmented the reinforce-
ment learning model with a strategy variable. Strategy z is either
0, indicating that the participant guessed, or 1, indicating that the
participant learned. The strategy for each participant and each
stimulus pair s is determined by stimulus-specific (s) learning
state probability πs, a proportion between 0 and 1. The higher the
learning state probability of a stimulus pair, the more participants
tend to learn that pair. A stimulus-specific learning state probabil-
ity is modeled to capture that some stimuli might be more easily
learned than others, for example because they are more salient
(O’Doherty, 2004; Schutte, Slagter, Collins, Frank, & Kenemans,
2017) or require less working memory because they are more
familiar (Stern, Sherman, Kirchhoff, & Hasselmo, 2001).

In a binary choice paradigm, when a participant guesses,
all choices are made with probability .5; when a participant
learns, each choice c is determined by the decision rule presented
in Eq. (3). In this way responses originating from learning and
guessing are separated and the learning and choice parameters
are only estimated when a participant learns. Hereby the RLGuess
model purifies the interpretation of these parameters while still

providing a complete description of behavior in reinforcement
learning tasks.

3.1. Model implementation

We implemented hierarchical extensions of the standard rein-
forcement learning (RL) model and the RLGuess model in R-3.4.3
(R Development Core Team & R Core Team, 2017). We imple-
mented the RLGuess model with stimulus-varying learning state
probabilities (RLGuessvary) and the standard RL model (RLfix). In
order to assess the effect of stimulus-specific parameters we
also implemented the RLGuess model with a fixed learning state
probability across stimuli (RLGuessfix) and an RL model with
stimulus-specific inverse temperatures (RLvary).

In a hierarchical approach individuals are assumed to be
nested within a group and therefore the individual-level param-
eters are drawn from a group-level distribution. We chose to
estimate parameters hierarchically because this improves accu-
racy of the individual-level parameter estimates (Efron & Morris,
1977; Lee & Webb, 2005; Shiffrin, Lee, Kim, & Wagenmakers,
2008) and therefore more sound conclusions can be drawn. In
addition, we used a Bayesian framework because it yields the
possibility to quantify uncertainty in the parameter estimates
(Wagenmakers, Morey, & Lee, 2016).

3.1.1. Graphical model
A graphical model (Lee & Wagenmakers, 2013) of the

RLGuessvary model is depicted in Fig. 1. In this figure, square
nodes represent discrete variables and round nodes represent
continuous variables. Nodes with a single border are stochas-
tic whereas a double border indicates deterministic variables.
Blank nodes indicate unobserved, that is latent, variables whereas
shaded nodes indicate observed variables. Furthermore, arrows
capture dependencies between nodes and encompassing plates
depict independent replications of model structures.

3.1.2. Prior distributions
In the analysis, we assigned an uninformative beta prior distri-

bution to the group-level mean of learning state probability. For
the RLGuessvary model we sampled stimulus-specific (s) values
from this distribution, πs ∼ Beta(1, 1) (see Fig. 1), and for the
RLGuessfix model we sampled one value, π ∼ Beta (1, 1). To ob-
tain a stimulus-specific (s) strategy z per participant (p) the learn-
ing state probability was inserted into an individual Bernoulli
distribution; for the RLGuessvary model, zp,s ∼ Bernoulli(πs), and
for the RLGuessfix model, zp,s ∼ Bernoulli(π ).

We assigned beta prior distributions to the individual-level
learning rate, ηp ∼ Beta(µηλη, (1 − µη)λη), and inverse temper-
ature, β ′

p ∼ Beta(µβ ′λβ ′ , (1 − µβ ′ )λβ ′ ) (Steingroever, Wetzels,
& Wagenmakers, 2014). Only for the RLvary model the inverse
temperature was made stimulus-specific, β ′

p,s ∼ Beta(µβ ′λβ ′ , (1−

µβ ′ )λβ ′ ). To estimate the learning rate and inverse tempera-
ture hierarchically, we replaced the rate and shape parameters
in the beta distribution with a group-level mean and group-
level precision. We assigned uniform prior distributions to the
group-level means µη and µβ ′ , U (.001, .999), as well as to
the log-transformed group-level precisions log(λη) and log(λβ ′ ),
U(log (2) , log (600)). We set these prior distributions such that
no strict restrictions to the range of individual differences were
made. As the range of the inverse temperature is assumed to be
[0,50] (Gershman, 2016), not [0,1] as the underlying beta distribu-
tion suggests, the following transformation was performed to the
individual-level parameters: In the RLGuessvary, RLGuessfix and
RLfix model, βp = 50∗β ′

p, and in the RLvary model, βp,s = 50∗β ′
p,s

(Steingroever et al., 2014).
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Fig. 1. Graphical representation of RLGuessvary model for choice cp,t,s of participant p = {1, 2, . . . , P} across trials t = {1, 2, . . . , T } of stimulus pair s = {1, 2, . . . , S}.
Obtained reward R is either 0 (i.e., negative outcome) or 1 (i.e., positive outcome).

3.2. Parameter estimation

We estimated the parameters of the RLGuess models and the
RL models in JAGS (Plummer, 2003) by means of the R2jags
package (Su & Yajima, 2015). JAGS uses Markov chain Monte Carlo
(MCMC) sampling (e.g., Gamerman & Lopes, 2006; Gilks, Richard-
son, & Spiegelhalter, 1996) to obtain direct samples from the pos-
terior distribution. As this posterior distribution cannot always
be obtained analytically, MCMC sampling is used to characterize
the distribution without knowing all of the distribution’s math-
ematical properties (van Ravenzwaaij, Cassey, & Brown, 2018).
Sampling chains are constructed that cover the entire posterior
distribution. The narrower the distribution, the more certain one
can be of the point estimate given by the average of the sampling
chains (Lee & Wagenmakers, 2013). We initialized 3 sampling
chains with 10,000 iterations each; from these 10,000 iterations
half was removed as burn-in to minimize the influence of the
chosen starting values. Furthermore, every 10th iteration was
used to remove autocorrelation (thinning). Consequently, 3 x
500 = 1500 representative samples were obtained per parameter.
Convergence of sampling chains was investigated using the R-
hat statistic (Gelman & Rubin, 1992), a statistic that compares
the variance between and within sampling chains; we interpreted
values above 1.1 as convergence problems. When we encountered
convergence problems, we reran the replication with 20,000 iter-
ations, 10,000 samples removed as burn-in and a thinning factor

of 20. The code for simulation, model implementation, model fit
and analysis are provided on https://osf.io/uk684/. To illustrate
the workings of MCMC sampling, an example of the learning
curve of a simulated participant accompanied with the returned
MCMC chains for the model parameters is presented in Fig. 1 of
the Supplementary Materials.

4. Simulations

A simulation study was performed to compare model fit be-
tween the four models, to assess the parameter recovery capabil-
ities of the RLGuessvary model, and to investigate parameter bias
resulting from model misspecification. To do so, we simulated
choices and rewards for 4 different stimuli with 24 trials each
(total of 96 trials) for 38 participants in six simulation conditions.
Hereafter we fit the four models to the simulated data sets thus
obtained. We did this 100 times (replications).

To assess which of the four models recovered the simulated
data sets best, we compared the Deviance Information Criterion
(DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). In this
model comparison approach the deviance of the model – with
lower values indicating better fit – is traded off against the
number of free parameters.

To assess parameter recovery, point estimates of the group-
level means of the model parameters were determined by aver-
aging the 1500 posterior samples of that group-level mean. These

https://osf.io/uk684/
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group-level means were averaged over the 100 replications. In
addition, for both the group-level and individual-level param-
eters, we computed the number of times the true parameter
value lay within the 95% highest-density interval of the estimated
posterior distribution of that parameter, and averaged across the
100 replications to determine the accuracy of the parameter
estimates. We formally tested whether the difference between
the true and estimated learning and choice parameters differed
between the four models by means of Bayesian paired t-tests
(Bååth, 2014; Kruschke, 2013). Finally, we calculated the propor-
tion of sampled strategies (z) and rounded to integers (i.e., all
proportions < 0.5 were rounded to 0, and > 0.5 to 1). We then
determined the percentage of correctly classified strategies by
averaging the proportion of rounded strategies that matched the
simulated strategy across the 100 replications.

4.1. Simulation conditions

We simulated data in six conditions. In all conditions the
group-level mean of learning rate was set to .280 and the group-
level mean of inverse temperature to 6.6. First, a condition in
which on average 80% of the participants learn a particular stim-
ulus but each stimulus had a different probability to be learned
(i.e., data generated given the RLGuessvary model); to accom-
plish this, we set the probability to adopt a learning strategy
to π = {.65, .75, .85, .95} for the four stimulus pairs. We used
on average 80% congruent feedback (i.e., in 80% of the cases
positive feedback following the most favorable choice and neg-
ative feedback following the least favorable choice; and in 20% of
the cases negative feedback following the most favorable choice
and positive feedback following the least favorable choice). This
percentage is commonly used in reinforcement learning studies
(e.g., Eppinger et al., 2009; Hauser, Iannaccone, Walitza, Brandeis,
& Brem, 2015; van den Bos, Güroğlu, Van Den Bulk, Rombouts,
& Crone, 2009). As both learning and guessing are simulated in
this condition, with varying learning state probabilities across
pairs, and the reward probabilities of both options (i.e., 80% for
the most favorable option and 20% for the least favorable one)
are dissimilar, we call this condition the Mixed (dissimilar/vary)
Condition.

Second, we also simulated data in a condition in which again
on average 80% of the participants learned each stimulus and
each stimulus had a different probability to be learned (i.e., data
generated given the RLGuessvary model), but it was harder to
differentiate between learning and guessing responses. We ac-
complished this by lowering the percentage of congruent feed-
back from 80% to 60% in this Mixed (similar/vary) Condition.
Because the difference between the percentages of rewards for
both response options is smaller (i.e., 60% for the most favorable
option and 40% for the least favorable one), response patterns that
arise from learning are more similar to guessing responses than
in the preceding condition.

Third, we simulated data in which on average 80% of the par-
ticipants learn a particular stimulus but this probability was fixed
across pairs (i.e., data generated given the RLGuessfix model); we
accomplished this by setting the probability to learn each pair to
π = .8. Again 80% congruent feedback was used. This is called
the Mixed (dissimilar/fix) Condition.

Fourth, in the Mixed (similar/fix) Condition, on average 80%
of the participants learn a particular stimulus and the probabil-
ity was fixed across pairs (i.e., data generated given RLGuessfix
model), but now with 60% congruent feedback.

Fifth, in the Learning (vary) Condition, all participants learn all
stimulus pairs (i.e., π = 1). We varied the inverse temperature
parameter across stimulus pairs (i.e., data generated given RLvary
model). Again the percentage of congruent feedback was 80%.

In the final Learning (fix) Condition, we simulated data with
the standard RLfix model in which all participants learn all pairs,
a fixed inverse temperature across pairs and 80% congruent feed-
back.

We did not include Learning Conditions with 60% congruent
feedback because we were mainly interested in the effect of
feedback congruency on the strategy recovery capabilities of the
RLGuess model when the data contain guessing responses. In each
condition 100 replications were ran which resulted in a total of 6
x 100 = 600 simulated data sets.

4.2. Results

4.2.1. Model validation
Model selection by means of the DIC showed that in general

the data generating model fitted the data best, although not in
every replication (see Table 1).

4.2.2. Parameter estimates
We compared the true and estimated values of learning state

probability π , learning rate η and inverse temperature β . A more
thorough summary of the simulation results is provided in Table 1
of the Supplementary Materials. The posterior distributions of the
group-level means of learning state probability, learning rate and
inverse temperature are depicted in Fig. 2 and the parameter
recovery capabilities of the four models are provided in Table 2.
Both are further discussed below.

RLGuessvary. The RLGuessvary model recovered all parameters
adequately in all conditions, except in the Learning Conditions.
In both Learning Conditions, the 95% highest-density interval did
not contain the true learning state probability (0.0%) because
this value was fixed at the bound of the beta prior distribution
(i.e., 1). Furthermore, inspection of the distributions in Fig. 2
shows that the inverse temperature was slightly underestimated
in the Learning (vary) Condition.

RLGuessfix. The same applies to the RLGuessfix model: All
parameters were adequately recovered in all conditions, except
the learning state probabilities in both Learning Conditions and
the inverse temperature in the Learning (vary) Condition.

RLvary. The RLvary model inadequately recovered parameters
in all conditions, except in the Learning (vary) Condition. Pa-
rameter estimation bias was most pronounced in the Learning
(fix) Condition: Learning rate was underestimated. Inspection
of the distributions in Fig. 2 shows that the estimated learn-
ing rates were generally lower than the true value. Estimated
inverse temperatures on the other hand were generally higher
than the true value and seemed to depend on the percentage of
congruent feedback. Additional simulations in which we used 70%
and 95% congruent feedback verified this pattern (see Fig. A.1):
The higher the percentage of congruent feedback, the larger the
overestimation of the inverse temperature.

RLfix. The RLfix model inadequately recovered parameters in
all conditions, except in the Learning (fix) Condition. In all other
conditions inverse temperatures were underestimated. Inspection
of the distributions in Fig. 2 shows the opposite pattern for the
RLfix model compared to the RLvary model: Learning rates were
generally higher than the true value and seemed to depend on
the percentage of congruent feedback whereas estimated inverse
temperatures were generally lower than the true value. Again,
this pattern was verified in additional simulations (see Fig. A.1).

Taken together, these simulation results thus indicate that
the RLGuess model outperforms standard reinforcement learning
models when participants guess: Fit is enhanced and parameters
are unbiased. Furthermore, model misspecification results in bi-
ased estimates of both learning rate and inverse temperature. In
a standard model with fixed inverse temperature across pairs,
learning rate is overestimated and inverse temperature underes-
timated. In a model with varying inverse temperature learning
rate is underestimated and inverse temperature overestimated.
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Table 1
Proportion of simulated data sets for which each model had the lowest DIC value per condition.

Data generating model

RLGuessvary RLGuessfix RLvary RLfix
Mixed
(dissimilar/vary)

Mixed
(similar/vary)

Mixed
(dissimilar/fix)

Mixed
(similar/fix)

Learning
(vary)

Learning
(fix)

Data recovering
model

RLGuessvary 56 74 45a 37a 0 16a

RLGuessfix 44a 26a 55 63 0 28a

RLvary 0 0 0 0 100 0
RLfix 0 0 0 0 0 56

Note. In bold the model for which most data sets yielded the lowest DIC value.
aIn case the best fitting model was not the data generating model, the difference between the DIC value of those models was often <10, that is 40/44, 23/26, 39/45,
29/37 and 40/44 for the five columns in Table 1 respectively.

Table 2
Percentage of cases where the models correctly classified the strategy (z) and where the 95% highest-density interval contained the true group-level mean of learning
state probability (π ), learning rate (η) and inverse temperature (β).

Data generating model

RLGuessvary RLGuessfix RLvary RLfix
Mixed
(dissimilar/vary)

Mixed
(similar/vary)

Mixed
(dissimilar/fix)

Mixed
(similar/fix)

Learning
(vary)

Learning
(fix)

Parameter

Data recovering
model

RLGuessvary

z 94.3% 90.8% 94.2% 89.8% 86.4% 99.7%
π a 94% 93% 96% 97% 0% 0%
η 93% 94% 93% 94% 91% 96%
β 94% 94% 94% 96% 89% 98%

RLGuessfix

z 93.9% 90.1% 94.3% 90.0% 86.8% 99.9%
π 93% 97% 96% 96% 0% 0%
η 93% 96% 92% 96% 90% 95%
β 92% 94% 94% 96% 88% 98%

RLvary
η 60% 79% 70% 70% 90% 24%
β 76% 84% 80% 86% 94% 30%

RLfix
η 88% 91% 88% 91% 79% 96%
β 31% 32% 42% 45% 9% 98%

aFor the RLGuessvary model the percentage of intervals containing the group-level mean of learning state probability was determined by averaging all samples over
the four stimulus pairs, then determining the 95% highest-density interval and whether the true group-level mean fell within this interval, and finally averaging over
the 100 replications.

5. Application to real data

5.1. Data

The four models were fit to reinforcement learning data col-
lected by Kramer (2017). A total of 38 participants performed on
a reinforcement learning task in which the correct spelling of a
pseudo word needed to be learned from feedback. The pseudo
word pairs were homophones (i.e., they sound the same; in
Dutch). In this task (see Verburg, Snellings, Zeguers, & Huizenga,
2018) four different stimulus pairs (see Table 3) were learned in
parallel with 24 trials each. Participants either gained nothing (0)
or gained +10 points (see Fig. 3 for an example trial). On average,
the percentage of congruent feedback was 65%, that is, in 65% of
the cases positive feedback after the most favorable choice and
negative feedback after the least favorable choice; and in 35%
of the cases negative feedback after the most favorable choice
and positive feedback after the least favorable choice. The data
contained 0.7% missing values as a result of late responses; these
responses were omitted from the analysis. The data are available
at https://osf.io/uk684/.

5.2. Results

The RLGuessvary model (DIC = 3819.45) described the data
better than the RLGuessfix model (DIC = 3829.83). It also fitted
better than the RLfix model (DIC = 3890.16) and the RLvary model
(DIC = 3938.04), suggesting that participants guessed at some
stimulus pairs and that some pairs were more easily learned than

others. This was supported by Bayesian t-tests on the estimated
learning state probabilities (π ): All probabilities differed from
each other. On average each stimulus pair was learned by 78%
to 94% of the participants (see Table 3).

Apart from general patterns in participants’ choice behavior –
formalized by the group-level means of learning state probability
(µπ = .87), learning rate (µη = .23) and inverse temperature
(µβ = 6.1) – the RLGuess model is able to identify individual
differences in the learning and guessing process. To illustrate the
information that can be obtained about individual participants,
the observed and predicted choices of four participants are shown
in Fig. 4.

Both the RLGuessvary model and the RLGuessfix model indicate
that participants 106 and 203 learned all stimulus pairs, even
though learning was less clear for participant 203. The models
suggest that participant 115 learned the last three pairs whereas
(s)he most likely guessed at the first pair. Lastly, the models
indicate that participant 120 guessed at the first and the third
pair and learned the other two pairs.

If a participant learns all pairs (PP 106 and 203), all four mod-
els predict roughly the same choice pattern for that participant;
when this learning strategy is clear (PP 106) the estimates of that
participants’ learning rate and inverse temperature are also very
similar for the four models. However, when participants seem to
guess at some pairs (PP 115 and 120), the predictive accuracy
of the RLfix and RLvary model decreases, especially for guessed
pairs, compared to the model predictions of the RLGuessvary and

https://osf.io/uk684/
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Fig. 2. The posterior distributions of the group-level means of learning state probability (π ; left column), learning rate (η; middle column) and inverse temperature
(β; right column) in the six simulated data conditions (six rows). In each panel the blue solid curve represents the posterior distribution of the group-level mean
by the RLGuessvary model, the striped blue curve by the RLGuessfix model, the solid red curve by the RLvary model, and the striped red curve by the RLfix model.
Vertical solid lines represent the true (black) and estimated (RLGuessvary: blue, solid; RLGuessfix: blue, striped; RLvary: red, solid; RLfix: red, striped) means of that
distribution. Horizontal line segments on top of each panel indicate the 95% highest-density interval of the posterior distributions estimated by the four models; the
black dot inside the interval indicates the true mean.

RLGuessfix model. Also the estimates of the learning and choice
parameters (for PP 115 both learning rate and inverse tempera-
ture and for PP 120 mainly inverse temperature) of the RLGuess
models and the RL models deviate.

6. Discussion

In this paper we proposed the RLGuess model — a rein-
forcement learning model augmented with a strategy variable,
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Table 3
The means of the posterior distributions of the learning state probabilities (π ), learning rates (η) and inverse temperatures (β) of the same participants displayed in
Fig. 4 estimated by the four models.

Model

RLGuessvary RLGuessfix RLvary RLfix
Stimulus Pair Kreip-

Krijp
Preil-
Prijl

Spreik-
Sprijk

Strein-
Strijn

Kreip-
Krijp

Preil-
Prijl

Spreik-
Sprijk

Strein-
Strijn

Parameter

π a .78 .86 .90 .94 .89 – –

PP

106 η .18 .18 .17 .18
β 8.12 8.28 10.7 5.56 10.6 9.56 8.04

203 η .54 .51 .35 .48
β 1.91 1.85 3.34 4.71 2.76 3.31 1.75

115 η .46 .42 .11 .40
β 1.98 2.06 3.76 7.42 6.15 3.74 1.96

120 η .29 .29 .29 .26
β 9.60 9.65 .92 12.2 1.63 8.54 2.99

aThis learning state probability can be interpreted as the proportion of learning (per stimulus pair).

Fig. 3. Example trial of the reinforcement learning task administered by Kramer
(2017).

enabling researchers to model that participants learn some stim-
ulus pairs while they guess at others. In simulations we showed
that, when the data contain guessing responses, the RLGuess
model fits data better than standard reinforcement learning mod-
els and adequately recovers the learning and choice parameters.
We also demonstrated the implications of using a standard rein-
forcement learning model when participants guess. In a standard
model with fixed inverse temperature across pairs, their learn-
ing rate is overestimated and their inverse temperature under-
estimated, suggesting that participants make faster adaptations
based on prediction errors and focus less on differences between
the values of options than they actually do. In a model with
varying inverse temperatures across pairs, their learning rate
is underestimated and their inverse temperature overestimated,
suggesting slower adaptations and more focus on differences
between values. Therefore we argue that standard reinforcement
learning models without considering guessing should only be
applied when there is good reason to believe that guessing does
not occur.

Other modeling approaches have previously been adopted to
reduce the impact of choices unrelated to the learning process.
Some models take into account lapses in attention by adding a
‘‘lapse rate’’ parameter to the softmax rule (see e.g., Economides,
Kurth-Nelson, Lübbert, Guitart-Masip, & Dolan, 2015). Similarly,
other models allow for occasional random choices by using an
epsilon-greedy decision rule (Sutton & Barto, 2018; see e.g., Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006; Speekenbrink & Kon-
stantinidis, 2015). However, the lapse parameter and the epsilon
in these previous approaches are not stimulus-specific, as is the
case in the RLGuess model.

Applications
The RLGuess model could be used to clarify differences in

choice behavior in various domains. In the developmental field,
differences in the learning and guessing process could be related
to different stages of development, both in child and adolescent
samples (e.g., van den Bos et al., 2009; Verburg et al., 2018)
as well as in samples consisting of seniors (e.g., Frank & Kong,
2008; Simon, Howard, & Howard, 2010). For example, the prob-
ability of guessing responses might decrease during childhood
and adolescence while it may increase again in seniors. In the
clinical field, clinical groups such as Parkinson patients (Frank
et al., 2004) could be compared to their healthy counterparts.
More broadly, the RLGuess model could be used to test the effect
of experimental manipulations such as set size (Collins & Frank,
2012), feedback valence (Eppinger & Kray, 2011; Palminteri et al.,
2012; Palminteri, Khamassi, Joffily, & Coricelli, 2015), feedback
validity (Eppinger, Kray, Mock, & Mecklinger, 2008; Nieuwenhuis
et al., 2002), or arousal (Lighthall, Gorlick, Schoeke, Frank, &
Mather, 2013; Raio, Hartley, Orederu, Li, & Phelps, 2017) on the
learning and guessing process.

Besides, modeling learning and guessing separately can
strengthen functional magnetic resonance imaging (fMRI) results
by removing guessing responses from the main analysis. Tra-
ditionally, prediction errors are correlated with blood-oxygen
level dependent (BOLD) responses in the brain (e.g., O’Doherty
et al., 2004; Pessiglione et al., 2006; van den Bos, Cohen, Kahnt,
& Crone, 2012). When participants guess, however, choices are
made randomly, they either do not compute prediction errors or
do not use them to update their value estimates as assumed in
reinforcement learning models. If these responses are included
this adds noise to the main analysis and thus makes it more
difficult to find prediction error related activity.

Future Directions/Extensions
In the RLGuess model, strategies are fixed across all trials of

a stimulus pair. In other words, we assume that a participant
either learns a stimulus from the first trial onwards or guesses.
There is no room for switching between the two strategies during
the task. It might be, however, that participants start off by
guessing, but move on to a learning strategy once they have
learned one of the other stimulus pairs, and, for example, working
memory capacity is available (Collins & Frank, 2012). Such a
process can be incorporated in the RLGuess model by modeling
the onset of learning (Gallistel, Fairhurst, & Balsam, 2004) or
by including a dynamic (see Busemeyer & Stout, 2002) learning
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Fig. 4. Observed (black solid line) and predicted learning curve by RLGuessvary (blue solid), RLGuessfix (blue striped), RLvary (red solid) and RLfix model (red striped)
of participants 106, 203, 115 and 120. On the y-axis the proportion of correct responses (i.e., choices for the option that yielded the highest reward); on the x-axis
for all four stimulus pairs the 24 trials divided into 6 bins of 4 trials (96 trials in total). Note that we ordered the data by stimulus pair; in the experiment pairs
were presented in a randomized order. Each vertical dotted line represents a new pair. The possible spellings of the pseudo words are presented above each pair;
the first pseudo word represents the correct spelling. Above these spellings the portion of sampled strategies by the RLGuessvary (top) and RLGuessfix (bottom) model
are denoted in which 0 = Guessing and 1 = Learning.

state probability. Second, the value updating mechanism used in
standard reinforcement learning models assumes a monotonic
learning process. A more flexible learning and guessing process
could be incorporated by determining the probability of both
strategies at each choice of a stimulus pair (Lee, Zhang, Munro,
& Steyvers, 2011). Third, we saw in the empirical application that
when participants first choose one of the options and during the
task switch to the other option (see PP120 stimulus 1 in Fig. 4),
these responses are classified as guessing. One could model these
sudden changes in choice behavior by incorporating uncertainty
about the unchosen option in the model; for example, by adding
an ‘‘uncertainty bonus’’ to the softmax decision rule (Daw et al.,
2006; Speekenbrink & Konstantinidis, 2015). Most likely, this
improves model fit but also requires more free parameters.

Another possible extension is to estimate a learning rate for
each stimulus pair separately. This would be meaningful if, for
example, stimulus pairs differ in the percentage of congruent
feedback and therefore prediction errors are more informative for
some of the pairs, those with high feedback congruency, than for
other pairs, those with low feedback congruency (e.g., Decker,
Lourenco, Doll, & Hartley, 2015; Doll et al., 2009; Hämmerer
et al., 2011). One could also decide to update not only the value
estimate of the chosen response option, but also of the unchosen
one. This adjustment would be suitable when, for example, de-
terministic feedback is used; in that case feedback also provides
information on the unchosen option (e.g., Peters, Braams, Raij-
makers, Koolschijn, & Crone, 2014; van der Schaaf, Warmerdam,
Crone, & Cools, 2011; Van Leijenhorst, Crone, & Bunge, 2006).

Other possible extensions are the inclusion of different types of
learning strategies (e.g., Bartlema, Lee, Wetzels, & Vanpaemel,
2014), separate learning rates for positive and negative prediction
errors (Daw, Kakade, & Dayan, 2002; Frank, Doll, Oas-Terpstra, &
Moreno, 2009; Frank, Moustafa, Haughey, Curran, & Hutchison,
2007; Gershman, 2015; Niv, Edlund, Dayan, & O’Doherty, 2012)
or inclusion of the propensity to switch between options inde-
pendent of rewards (Christakou et al., 2013; Gershman, 2016;
Gershman, Pesaran, & Daw, 2009).

7. Conclusion

To conclude, our results suggest guessing cannot be ignored
in reinforcement learning tasks. Therefore, we put forward a
simple and easy-to-apply model that can accurately describe
a reinforcement learning process while considering participants
might guess.
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