8,641 research outputs found

    Diffuse-interface model for nanopatterning induced by self-sustained ion etch masking

    Full text link
    We construct a simple phenomenological diffuse-interface model for composition-induced nanopatterning during ion sputtering of alloys. In simulations, this model reproduces without difficulties the high-aspect ratio structures and tilted pillars observed in experiments. We investigate the time evolution of the pillar height, both by simulations and by {\it in situ} ellipsometry. The analysis of the simulation results yields a good understanding of the transitions between different growth regimes and supports the role of segregation in the pattern-formation process.Comment: 10 pages, 3 figures; minor revisions with respect to first version; figures nicened; journal ref. adde

    Synchronous Behavior of Two Coupled Electronic Neurons

    Full text link
    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four dimensional ENs which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators.Comment: 26 pages, 10 figure

    Whistle source levels of free-ranging beluga whales in Saguenay-St. Lawrence marine park

    No full text
    International audienceWild beluga whistle source levels (SLs) are estimated from 52 three-dimensional (3D) localized calls using a 4-hydrophone array. The probability distribution functions of the root-mean-square (rms) SL in the time domain, and the peak, the strongest 3-dB, and 10-dB SLs from the spectrogram, were non-Gaussian. The average rms SL was 143.8 +- 6.7 dB re 1microPa at 1m. SL spectral metrics were, respectively, 145.8 +- 8 dB, 143.2 +-7.1 dB, and 138.5 +-6.9 dB re 1 microPa. 1microPa / Hz at 1m

    Fourier transform spectroscopy and coupled-channel deperturbation treatment of the A1Sigma+ ~ b3Pi complex of KCs molecule

    Full text link
    The laser induced fluorescence (LIF) spectra A1Sigma ~ b3Pi --> X1Sigma+ of KCs dimer were recorded in near infrared region by Fourier Transform Spectrometer with a resolution of 0.03 cm-1. Overall more than 200 LIF spectra were rotationally assigned to 39K133Cs and 41K133Cs isotopomers yielding with the uncertainty of 0.003-0.01 cm-1 more than 3400 rovibronic term values of the strongly mixed singlet A1Sigma+ and triplet b3Pi states. Experimental data massive starts from the lowest vibrational level v_A=0 of the singlet and nonuniformly cover the energy range from 10040 to 13250 cm-1 with rotational quantum numbers J from 7 to 225. Besides of the dominating regular A1Sigma+ ~ b3P Omega=0 interactions the weak and local heterogenous A1S+ ~ b3P Omega=1 perturbations have been discovered and analyzed. Coupled-channel deperturbation analysis of the experimental 39K133Cs e-parity termvalues of the A1S+ ~ b3P complex was accomplished in the framework of the phenomenological 4 x 4 Hamiltonian accounting implicitly for regular interactions with the remote states manifold. The resulting diabatic potential energy curves of the interacting states and relevant spin-orbit coupling matrix elements defined analytically by Expanded Morse Oscillators model reproduce 95% of experimental data field of the 39K133Cs isotopomer with a standard deviation of 0.004 cm-1 which is consistent with the uncertainty of the experiment. Reliability of the derived parameters was additionally confirmed by a good agreement between the predicted and experimental termvalues of 41K133Cs isotopomer. Calculated intensity distributions in the A ~ b --> X LIF progressions are also consistent with their experimental counterparts.Comment: 17 pages, 14 figure

    Climate effects and stature since 1800

    Get PDF
    During the last 30 years, economic and social historians have collected and analysed large amounts of anthropometric data in order to explore key aspects of the human past. Attention has also been devoted to the examination of factors that can exert an influence on stature. This article outlines the different ways in which climate might influence stature, either directly or indirectly. It then uses Geographical Information System (GIS) software to explore the relationship between variations in temperature and precipitation and the average heights of men in France, India, Mexico, Spain and the United States (US) over the last two centuries. It is possible to observe an influence of climate on stature in some countries, especially during the nineteenth century, but the relationship weakens across time and largely disappears in recent decades. The attenuation of this relationship is attributed to a process of “technophysio evolution” as countries modernised and developed economically
    corecore