

Metabolomics of fecal samples: a practical consideration

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Matysik, S., Le Roy, C. I., Liebisch, G. and Claus, S. P. (2016) Metabolomics of fecal samples: a practical consideration. Trends in Food Science and Technology, 57. pp. 244-255. ISSN 0924-2244 doi: https://doi.org/10.1016/j.tifs.2016.05.011 Available at http://centaur.reading.ac.uk/65839/

It is advisable to refer to the publisher's version if you intend to cite from the work.

To link to this article DOI: http://dx.doi.org/10.1016/j.tifs.2016.05.011

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Accepted Manuscript

Metabolomics of fecal samples: a practical consideration

Silke Matysik, Caroline Ivanne Le Roy, Gerhard Liebisch, Dr Sandrine Paule Claus

PII: S0924-2244(16)30198-4

DOI: 10.1016/j.tifs.2016.05.011

Reference: TIFS 1813

To appear in: Trends in Food Science & Technology

Received Date: 29 August 2015

Revised Date: 6 April 2016 Accepted Date: 16 May 2016

Please cite this article as: Matysik, S., Le Roy, C.I., Liebisch, G., Claus, S.P., Metabolomics of fecal samples: a practical consideration, *Trends in Food Science & Technology* (2016), doi: 10.1016/j.tifs.2016.05.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Metabolomics of fecal samples: a practical consideration
2	
3	Silke Matysik ¹ , Caroline Ivanne Le Roy ² , Gerhard Liebisch ¹ , Sandrine Paule
4	Claus ^{2*}
5	
6	1 Institute of Clinical Chemistry and Laboratory Medicine, University of
7	Regensburg, Germany.
8	2 Department of Food and Nutritional Sciences, The University of Reading
9	Whiteknights campus, PO Box 226, Reading RG6 6AP, UK.
10	
11	* Corresponding author:
12	Dr Sandrine Claus, s.p.claus@reading.ac.uk, +44 (0) 118 378 8717
13	
14	Key words: Metabolomics, Lipidomics, Feces, Methods
15	
16	

1/	ABSTRACT
18	
19	Background
20	Metabolic profiling is becoming increasingly popular to identify subtle metabolic
21	variations induced by diet alterations and to characterize the metabolic impact
22	of variations of the gut microbiota. In this context, fecal samples, that contain
23	unabsorbed metabolites, offer a direct access to the outcome of diet - gut
24	microbiota metabolic interactions. Hence, they are a useful addition to measure
25	the ensemble of endogenous and microbial metabolites, also referred to as the
26	hyperbolome.
27	Scope and Approach
28	Many reviews have focused on the metabolomics analysis of urine, plasma and
29	tissue biopsies; yet the analysis of fecal samples presents some challenges that
30	have received little attention. We propose here a short review of current
31	practices and some practical considerations when analyzing fecal material using
32	metabolic profiling of small polar molecules and lipidomics.
33	Key Findings and Conclusions
34	To allow for a complete coverage of the fecal metabolome, it is recommended to
35	use a combination of analytical techniques that will measure both hydrophilic
36	and hydrophobic metabolites. A clear set of guidelines to collect, prepare and
37	analyse fecal material is urgently needed.
38	

39	Highlights
37	nigillights

40	1.	Untargeted metabolic profiling of fecal material is robustly achieved using
41		NMR-based metabolomics

- 2. Mass spectrometry is mostly used for targeted metabolic profiling of a class of molecules for deep coverage and high sensitivity
- 3. Lipidomics profiles are extremely complex as they contain a mixture of endogenous, diet-related and microbial lipids that may be of interest for bacterial identification

INTR	ODU	CTION
------	-----	-------

49	The gut microbiota is a highly metabolically active community of micro-
50	organisms inhabiting all niches along the intestine, that is now recognized as a
51	critical regulator of its host homeostasis.(O'Hara & Shanahan, 2006) It has been
52	estimated that the gut microbiota as a whole contains 100 times more genes
53	than human cells, hence its potential to be a key metabolic player. It is therefore
54	expected that modifying the gut microbial balance would induce a shift in the gut
55	metabolic environment that can in turn affect our own metabolism.
56	The gut microbiota composition varies considerably over a lifetime.(Yatsunenko
57	et al., 2012) It takes approximately two years to a newborn to acquire a stable
58	GM population(Palmer, Bik, DiGiulio, & Relman, 2007) that will evolve through
59	life under the pressure of various factors such as, for instance, diet, lifestyle and
60	exposure to antibiotics, all commonly referred to as the 'exposome'. (Claesson et
61	al., 2011; Claus & Swann, 2013; Lozupone, Stombaugh, Gordon, & Jansson, 2012)
62	Later in life, a loss of microbial diversity is generally observed with senescence.
63	(Biagi, Candela, Fairweather-Tait, Franceschi, & Brigidi, 2011; Claesson et al.,
64	2011) As recently demonstrated, even perturbations of the circadian cycle have
65	been observed to affect the balance of the gut microbial community. (Mukherji,
66	Kobiita, Ye, & Chambon, 2013; Voigt et al., 2014)
67	Diet is the main factor influencing gut microbiota composition since it provides
68	microorganisms with their main organic carbon source.(Flint, Duncan, Scott, &
69	Louis, 2015) This connection was recently further evidenced by a study
70	demonstrating that a drastic change of diet such as switching from vegetarian to
71	carnivorous and inversely can profoundly reorient the GM ecosystem in a very
72	short period of time.(David et al., 2015) Thus, along genetic and other

73 environmental factors, diet strongly contributes to the unique character of every 74 individual's gut microbiota. 75 Bacteria have a high metabolic activity that generates a wide range of products 76 such as organic acids, alcohols and gas that may become available for the host or 77 other commensal bacteria for cross-feeding. This symbiotic activity shapes the 78 gut metabolic environment. Complex carbohydrates, that cannot be digested in 79 the upper gastrointestinal track and are a major source of carbon for colonic 80 bacteria.(Scott, Duncan, & Flint, 2008) Their fermentation results in the 81 production of short chain fatty acids (SCFAs: acetate, propionate, butyrate and valerate) that play an important role in human health. (Besten, van Eunen, Groen, 82 83 & Venema, 2013) Other food components such as lipids and proteins can largely composition of the gut microbiota and its 84 metabolic impact the 85 activity.(Sonnenburg & Sonnenburg, 2014) Endogenous secretions such as the 86 bile acids contained in bile are important regulators of the gut microbiota. 87 Reciprocally, gut bacteria are known to extensively alter the structure of sterols 88 that leads to the formation of secondary and tertiary bile acids. (Sayin et al., 89 2013) This is an example of a major gut microbiota-host interplay that 90 contributes to regulating the absorption of dietary lipids during digestion. Hence, 91 the diet-gut microbiota interaction plays a key role in the metabolic homeostasis 92 of its host. It is therefore of utmost importance to understand the biological 93 mechanisms that underlie this complex relationship. Systems biology 94 approaches that study a system as a whole (e.g. a micro-organism within a host, 95 the interactions occurring within a community of bacteria etc.) are increasingly 96 popular to decipher these interactions. In particular, metabolic profiling 97 techniques are tremendously useful to understand the metabolic pathways

regulated through the host-gut microbiota interaction. A variety of sample types ranging from biofluids to tissue biopsies can be analyzed to capture the systemic metabolic response to the exposome. Of particular interest, feces are easily accessible and provide a non-invasive window to study the outcome of the dietgut microbiota-host interaction through the analysis of remaining unabsorbed metabolites. Yet, the analysis of fecal samples for metabolic profiling has received little attention. In this review, we will explore the dominant technologies that are commonly applied to assess the fecal metabolome and discuss about practical aspects that must be considered when dealing with this material.

NMR-based metabolomics of fecal samples

Metabolic profiling, also referred to as metabolomics, is mostly achieved using two analytical platforms: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) to evaluate the metabolic composition of a chosen biological matrix. These techniques allow the simultaneous measurement of a wide range of metabolites in a sample, and when combined, offer a large coverage of the metabolome (i.e. the set of metabolites in a sample).

Untargeted metabolic profiling by ¹H NMR spectroscopy measures all metabolites with nonexchangeable protons that are present in a sample in a relatively high concentration (in the micromolar range). Because it is highly reproducible, is cost effective and usually requires only a few simple preparation steps, NMR-based metabolic profiling has been widely applied to the analysis of virtually all biological matrices, including feces. (Li et al., 2011; Martin et al., 2010; Saric et al., 2008)

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

In humans, ¹H NMR-based metabolic profiling of fecal material has been successfully applied to assess the impact of the composition of the gut microbiota on the gut metabolic environment in the context of ulcerative colitis (UC) and irritable bowel syndrome (IBS).(Le Gall et al., 2011) A similar approach was applied to monitor the gut microbial metabolic activity in elderly (Claesson et al., 2012). In this study, it was possible to cluster patients according to their community setting (length of hospital care) based on fecal water profiling. A recent study also demonstrated the possibility of evaluating independent bacterial contributions at a species level to the gut metabolic environment using this technique. (Le Roy et al., 2015). Applied to the monitoring of probiotic consumption, it was possible to detect faecal metabolic modifications in response to increased *Bifidobacterium* in the colon (Ndagijimana et al., 2009) In animal models, profound reorientation of the gut microbial community induced by antibiotics in mice was associated to modifications of fecal metabolic profiles measured by the same technique. This was mainly associated to a modification in the fecal content in amino acids and SCFAs.(Yap et al., 2008). Similarly, Romick-Rosendale et al., (Romick-Rosendale et al., 2009) also showed a modification of murine fecal metabolic profiles in response to antibiotic treatments. NMR-based metabonomics analysis of fecal water also proved to be able to differentiate age groups in mice. (Calvani et al., 2014) Finally NMR-based metabonomics can be applied to nutrition (also referred to nutrimetabonomics) (Claus & Swann, 2013) to access modification of the gut metabolic environment in response to diet modulation. As an example, a study by De Filippis et al., (De Filippis et al., 2015) used NMR-based metabonomics to evaluate the impact of a Mediterranean diet on gut microbiota metabolic activity.

The study demonstrated that following a Mediterranean diet improved the
detection of SCFAs in fecal waters compared with a western diet. Similarly, fecal
metabolic modifications have been observed in response to food
supplementation investigated in in vitro gut models. (Frost et al., 2014).
Since fecal samples contain a complex mixture of metabolites, most NMR-based
metabolic profiling studies use a selective NOESY experiment with water
presaturation applied during recycle delay and mixing time to detect signals
caused by small molecular weight molecules as well as some lipids. This is often
referred to as the NOESYPR1D experiment [RD-90º-t ₁ -90º-t _M -90º-ACQ], where
RD is the recycle delay, t_1 a short interval of about 3 μs , t_M the mixing time of
approximately 100 ms and ACQ the FID acquisition period. Interestingly, a
number of studies investigating fecal samples have also used a CPMG (Carr-
Purcell-Meiboom-Gill) experiment, (Bjerrum et al., 2014; Li et al., 2011) which
uses t_2 filtering to reduce signal resonance from large macromolecules.
(Meiboom & Gill, 1958) However, this should be considered with care since the
number of loops and length of echo time that must be optimized for each CPMG
experiment would determine the signal/noise ratio, therefore preventing
absolute quantification. This is not an issue when only relative quantifications
are needed.

Preparation of fecal material for metabolomics studies

Recently, Deda et al. reviewed sample preparation methods for fecal samples for metabolomic analysis.(Deda, Gika, Wilson, & Theodoridis, 2015) They provided a comprehensive overview of fecal sample preparation for NMR, GC-MS and LC-MS analysis including some critical aspects and specific requirement of the different technologies. Therefore, we will not cover sample preparation in details here but

a summary of the protocols and methods used in previously published research
papers are presented in Table 1. However, it is noteworthy that this review
highlighted the lack of consensus about sample preparation for both metabolic
profiling technologies. For sample extraction, it seems that a dilution of 1 volume
of feces material for 2 volumes of PBS buffer is most commonly used. The buffer
is generally composed of a mixture of H_2O and D_2O (minimum 10 %) in various
amounts, with an adjusted pH of 7.4 and an internal standard to serve as NMR
reference. The most common internal reference is 3-(trimethylsilyl)-2,2,3,3-
propionate-d4 (TSP). Deda et al. discuss that TSP signal intensity can be affected
by pH but so far, the only alternative is 2,2-dimethyl-2-silapentane-5-sulfo- nate-
d6 (DSS). However, unlike TSP, DSS has multiple small resonances in addition to
the main resonance at 0 ppm that may interfere with other signals and therefore
it should be used at a very low concentration (0.01% would be recommended).
Homogenization of fecal material can be done directly in the NMR buffer that will
be used for NMR analysis, minimizing the number of sample processing steps
that may alter metabolic profiling. However, it also appears that a
water/methanol extraction tends to improve the overall recovery of fecal
metabolites. Nevertheless it was also argued in a publication by Jacobs et al.,
(Jacobs et al., 2007) that methanol extracts were less representative of the real
metabolic composition of the fecal water encounter in the colon and therefore of
the metabolite pool that interacts with the intestinal membrane.

Mass spectrometry-based metabolomics of fecal samples

Untargeted metabolic profiling using MS-based techniques is more sensitive than NMR (in the nanomolar range) but often generates a large amount of unknown signals and as a consequence, these techniques have been mostly used for

targeted metabolomics, where the method is optimized to the detection of a specific class of samples. MS-based metabolic profiling is usually achieved using either gas chromatography (GC-MS) or liquid chromatography (LC-MS).

203204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

GC-MS based metabolomics

The group of Sébédio presented two GC-MS methods to analyze the metabolome of fecal water. In their first study they used an ethyl chloroformate derivatization (Gao et al., 2009). In fecal water samples of healthy subjects 73 compounds were identified and thereof 34 validated by reference standards. The second study applied trimethylsilylation and identified 133 compounds (including amino acids, carbohydrates short and long chain fatty acids and phenolics) in human fecal water and the majority validated by authentic standards (Gao, Pujos-Guillot, & Sébédio, 2010). In both studies several extraction conditions were tested and the highest recovery of metabolites detected for neutral and basic pH which was confirmed also by others (Deda et al., 2015). However, it has been suggested that increasing pH from 6 to 7 may decrease the loss of volatile SCFA during lyophilization (Gao, Pujos-Guillot, & Sébédio, 2010). Phua et al. presented a GC-TOF-MS analysis of feces after freeze drying followed by oximation and silylation (Phua, Koh, Cheah, Ho, & Chan, 2013). The authors argue that removal of a variable content of water increased the reproducibility of sample preparation. They identified 107 metabolites by matching with different mass spectra libraries. However, only a few analytes were confirmed by reference substances. This method was applied in detection of colorectal cancer (Phua et al., 2014). Main markers for CRC differentiation include decreased level of fructose, nicotinic acid and linoleic acid in CRC patients.

225	Using a similar methodology, Weir et al. analyzed the fecal metabolome in CRC
226	patients (Weir et al., 2013). Metabolite identification was based on database
227	matching. In agreement with Phua et al. they detected decreased linoleic acid in
228	CRC patients compared to healthy controls. Moreover, reduced level of oleic and
229	elaidic acids were found in CRC patients. In contrast to these fatty acids (FAs)
230	myristic acid and several amino acids were increased in CRC patients. It is
231	noteworthy that fatty acid identification does not differentiate double bond
232	positions.
233	A very efficient approach to analyze volatile organic compounds (VOC) of feces is
234	headspace solid-phase microextraction (SPME). Volatile metabolites are
235	adsorbed to polymer coated fibers which are analyzed by GC-MS. Typically the
236	analyte spectrum includes hydrocarbons, alcohols, aldehydes and organic acids
237	(primarily short chain) and their esters. Dixon et al. tested different fibers to get
238	a comprehensive coverage of VOCs (Dixon et al., 2011). Ahmed et al investigated
239	fecal VOCs in patients with irritable bowel syndrome, active Crohn's disease,
240	ulcerative colitis and healthy controls (Ahmed, Greenwood, de Lacy Costello,
241	Ratcliffe, & Probert, 2013). They identified 240 metabolites which allowed a
242	differentiation of patients with irritable bowel syndrome from patients with
243	inflammatory bowel diseases and healthy controls.
244	
245246	LC-MS based metabolomics In contrast to GC-based methods, LC-MS usually does not require metabolite
247	derivatization but is restricted to analytes containing polar groups. Cao et al.
248	used UPLC-MS/TOF-MS to analyze the fecal metabolome in patients with liver
249	cirrhosis and hepatocellular carcinoma (HCC) (Cao et al., 2011). Fecal samples

were homogenized, centrifuged and injected after filtration. Metabolic features

251	were analyzed by multivariate data analysis. Chenodeoxycholic acid, 7-
252	ketolithocholic acid, urobilinogen, urobilin, lysophosphatidylcholine (LPC) 16:0
253	and 18:0 were found to discriminate between healthy controls and patients with
254	liver cirrhosis and HCC. Whereas LPC species were found in increased levels, the
255	other discriminatory markers were decreased in the patient samples. The
256	identities of these markers were confirmed by comparison of chromatographic
257	retention and product ion spectra with authentic standards.
258	A study by Jimenez-Girón investigated changes in the fecal metabolome related
259	to the consumption of red wine (Jiménez-Girón et al., 2015). Feces samples were
260	analyzed after mixing with saline solution, centrifugation and filtration by
261	UHPLC-TOF-MS. Mass features were subjected to statistical analysis and 37
262	metabolites were found to be related to wine intake. Metabolite identification
263	was performed by database searching and confirmation by authentic standards.
264	This way 14 metabolites could be identified tentatively, 6 mass features match to
265	standards (m/z and retention time).
266	The fecal metabolome of rats with chronic renal failure were analyzed by Zhao et
267	al. (Zhao, Cheng, Wei, Bai, & Lin, 2012). Homogenized fecal samples were
268	extracted with acetonitrile and analyzed by UPLC-Q-TOF-MS. Both polarities
269	including fragment ions were recorded and used for identification and validation
270	of mass features. Except an increase of adenine (used to induce kidney failure), 8
271	lipid metabolites were found decreased in rats with chronic renal failure.
272	An interesting approach to profile amine- and phenol-containing metabolites
273	was presented recently by Su and colleagues (Su et al., 2015). Dried fecal
274	samples are extracted sequentially with water and acetonitrile followed by
275	derivatization with dansyl chloride. As an internal standard an aliquot of a

pooled fecal extract was added which was derivatized with ¹³ C-labelled dansyl
chloride. Dansylation improves both LC separation efficiency and MS response of
the compounds. 6200 peaks were detected in 237 different samples and 67
metabolites (mainly amino acids) were identified based on mass and retention
time matching to a dansyl standard library.
In summary, both GC- and LC-based metabolomics studies are able to discover a
number of differentially regulated metabolic features in fecal samples in various
studies. However frequently, only a few of these features could be identified.
Moreover, several studies did not prove the identity by authentic standards but
only by matching of m/z values to database entries. In general, GC-MS based
studies identify an increased number of metabolites which may partly reflect the
superior chromatographic resolution and peak shape of GC compared to LC
methods. This allows a more reliable extraction and comparison of metabolic
features between different samples. Additionally, GC usually provides mass
spectra generated by ionization-induced fragmentation that are useful for
metabolite identification. A disadvantage of GC analyses is a more laborious
sample preparation including the need of derivatization as a potential source of
artifacts. Conversely, GC-MS clearly shows advantages compared to LC-MS in
terms of deleterious matrix effects. So it is generally accepted that quantification
of analytes by LC-MS requires internal standards, ideally stable isotope labeled
for each analyte. Therefore a major source of errors of LC-MS metabolic profiling
may be related to undiscovered matrix effects especially in heterogeneous
sample material like feces. Consequently, in order to provide solid data
metabolomics studies should validate their biomarkers by quantitative analysis

	recui illa minoschi i
300	using authentic standards and internal standards especially when LC-MS is
301	applied at least in a representative cohort.
302 303 304	Mass spectrometry-based targeted metabolic analysis In contrast to untargeted analysis, targeted analysis is confined to a limited set of
305	analytes. These methods are optimized for high analyte recoveries during
306	sample preparation and a reproducible, accurate quantification of the target
307	molecules. Most methods rely on internal standards (mandatory for LC-MS),
308	calibration lines and method validation shows their performance.
309 310 311	SCFA An excellent example for targeted analysis of potential biomarkers is the
312	quantitation of short chain fatty acids (SCFA). A recent study by Han et al.
313	presented a LC-MS/MS method for SCFA quantification in human feces (Han, Lin,
314	Sequeira, & Borchers, 2014). SFCAs are converted to 3-nitrophenylhydrozones
315	(3NHPH) which are separated by reversed phase chromatography and detected
316	in negative ion mode. The method covers 10 straight- and branched chain SCFAs.
317	In an elegant way, this study introduced an internal standard for every analyte
318	by conversion of a standard mixture with a ${}^{13}\text{C}_6$ -labeled derivatization reagent.
319	This method showed a high reproducibility and analysis of human fecal samples
320	revealed an increased fraction of branched-chain SCFA in T2D patient compared
321	the other analyzed samples.
322	In contrast to LC-MS/MS analysis, GC-MS may rely on a fewer number of internal
323	standards since matrix effects are less pronounced. A study by Zheng et al.
324	quantified SCFAs and branched-chain amino acids (BCAAs) in feces and other
325	biological materials using D ₃ -caproic acid as internal standard (Zheng et al.,

) after propyl chloroformate derivatization.

2	2	7
~ ~	/.	/

328 329	Analysis of sterols and bile acids in faeces Sterols and bile acids belong to another class of analytes studied for a long time
330	in feces by targeted analysis. Cholesterol is an essential component of all
331	mammalian cell membranes and it is the precursor of steroid hormones and bile
332	acids. There has been a long interest in the intestinal metabolism of cholesterol
333	because the gut microbiome is highly involved in the balance between
334	absorption, excretion and metabolism. Between 34-57% of dietary cholesterol is
335	absorbed from the human intestine (Grundy et al., 1977). Fecal excretion of total
336	neutral sterols has been reported to range between 350-900 mg/day, of which
337	20% is cholesterol. There are several primary sources of fecal cholesterol:
338	unabsorbed from the diet, bile and intestinal epithelium. It is well-known that
339	the luminal cholesterol can be metabolized by the gut microbiota. This
340	cholesterol escaping intestinal absorption is degraded to coprostanol through
341	reduction of the double bond at C-5. (Figure 1) Coprostanone is also produced in
342	a lesser extent. (Eyssen et al., 1974; Lichtenstein, 1990; Gerard, 2013). In human
343	feces, cholesterol derivatives have been reported in the following proportions:
344	coprostanol 65%, cholesterol 20%, coprostanone 10 %. (Figure 1) Other minor
345	derivatives include cholestanone, cholestanol and epicoprostanol.
346	Many attempts have been made to isolate bacteria capable of reducing
347	cholesterol to coprostanol from human and animal faeces (Snog-Kjaer et al.,
348	1956; Crowther et al., 1973). Certain anaerobic bacteria from human faeces are
349	known to hydrogenate cholesterol in vitro. Cholesterol reduction by common
350	intestinal bacteria such as Bifidobacterium, Clostridium, and Bacteriodes has
351	also been reported and reviewed extensively (Gerard, 2013). In addition,
352	reference values have been generated for fecal excretion of cholesterol and

353	coprostanol (Benno et al., 2005) to differentiate between high-, low- and non-
354	converters.
355	Bile acids are derived from cholesterol and are produced by every class of
356	vertebrate animals and show substantial diversity across species (Hofmann et
357	al., 2010). In bile, bile acids rapidly form mixed micelles with secreted
358	cholesterol and phospholipids. Bile acids enter the intestine as di- and
359	trihydroxylated acyl conjugates, in mammals with the amino acids taurine and
360	glycine (Hofmann, 2009). In the intestinal lumen, conjugated bile acids directly
361	affect the microbiota because they exert antimicrobial properties besides
362	stimulating enterocytes to secrete undefined antimicrobial compounds
363	(Hofmann et al., 2006). Conversely, gut bacteria structurally alter bile acids
364	through deconjugation of taurine, glycine and sulfate moieties and hydroxylation
365	of the sterol backbone.
366	During digestion, bile acids facilitate lipid absorption by stabilizing lipid micelles.
367	Since bile acids have various degrees of hydrophobicity, and therefore various
368	stabilizing properties, the bile acid composition of the bile is an important factor
369	that regulates fat absorption. The enterohepatic cycle of bile acids is a key
370	regulator of hepatic bile acid de novo synthesis and cholesterol excretion. Indeed,
371	bile acids undergo extensive reabsorption by active and passive routes so that
372	95 % of secreted bile acids are reabsorbed daily. Since deconjugated bile acids
373	are less polar, passive diffusion is reduced and it has been shown that active
374	deconjugation by gut bacteria increases the overall excretion of bile acids in
375	feces, hence the role of bacteria in regulating fecal cholesterol loss (Claus et al.,
376	2011; 2008; Kellogg, Knight, & Wostmann, 1970; Sayin et al., 2013). In human, a
377	limited number of commensal bacteria are capable of removing the 7-hydroxyl

378	group from di- and trihydroxy bile acids and 7-deoxy species are formed. The
379	most common 7-deoxy bile acids are lithocholic and deoxycholic acid. Many
380	excellent reviews exist in the recent literature covering bile acid function,
381	signaling and therapeutic potential (Ridlon et al., 2006; Hofmann et al., 2008;
382	2009; Trauner et al., 2010; Hagey et al., 2013).
383 384 385 386	Sample Preparation and Instrumental Strategies for Targeted Metabolomics Analysis SCFAs are volatile and therefore freeze drying of stool samples may result in
387	lower recovery. Han et al. used homogenized samples and extracted SCFAs by
388	addition of 50% aqueous acetonitrile (Han, Lin, Sequeira, & Borchers, 2014).
389	These extracts were subjected directly to derivatization with 3-
390	nitrophenylhydrazine HCl. Zheng et al. used 0.005 M aqueous NaOH to
391	homogenize fecal samples at 4°C to protect the volatile SCFAs (Zheng et al.,
392	2013). The homogenates were derivatized with propyl chloroformate and
393	extracted with hexane extraction for GC-MS analysis.
394	Extensive overviews of state-of-the-art methods to analyze fecal steroids can be
395	found in the literature, e.g. (Story & Furumoto, 1991; Perwaiz et al., 2002;
396	Griffiths & Sjövall, 2010) . The first and often referred methods for fecal steroid
397	and bile acid analysis were a combination of thin-layer chromatography and gas-
398	liquid chromatography published 1965 by Grundy, Miettinen and co-workers
399	(Grundy et al., 1965; Miettinen et al., 1965). Sample pretreatment included
400	homogenization, saponification and liquid/liquid extraction followed by thin-
401	layer chromatography and trimethylsilylation. Individual components are then
102	quantitatively measured by gas-liquid chromatography equipped with a flame
103	ionization detector. Bile acids underwent a methylation step before thin-layer

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

chromatography. This approach was applied in many studies for the analysis of endogeneous and exogeneous (labelled) compounds.(Spritz et al., 1965; Grundy et al., 1969). Evrard and Janssen suggested a method for bile acid analysis which took advantage of a different extraction scheme and an alternate derivatization (Evrard & Janssen, 1968). The method is based on heating in presence of acetic acid and extraction with toluene. Quantification was done as methylketone derivatives. In the 1980s methods with subfraction steps have been proposed to isolate taurine and glycine conjugated and sulphated bile acids (Setchell et al., 1983; Owen et al., 1984) using GC analysis. Nowadays, the most common strategies to analyze sterol profiles including cholesterol, coprostanol and coprostanone in faeces are based on GC-MS. The sample preparation protocol includes repeated sampling for better representativeness, a dilution step, hydrolyzation of esterified sterols, extraction with a mixture of hexane and ethanol and derivatization (Lutjohann et al., 1993; Midtvedt et al., 1990; Andrasi et al., 2011). For example, Korpela et al. suggested a very detailed protocol which included a 72 h sampling of faeces, methanol-chloroform extraction, separation of free and esterified sterols with a Lipidex-5000 column, saponification, separation of hydroxylated and oxo-forms by a second column, and trimethylsilyl derivatization followed by GCMS (Korpela, 1982), LC-MS and MS/MS have also been widely exploited for bile acid analysis of human urine, plasma/serum, bile and also feces (Perwaiz et al., 2002; Hagio et al., 2009; Griffiths & Sjövall, 2010). Quantification is best performed by addition of isotope labeled internal standards. These should be added as early as possible in the analytical process so as to account for analyte loss during sample preparation.

	ACCEPTED MANUSCRIPT
428	Bile acids can usually be extracted from fluids and tissues with ethanol, methanol
429	or acetonitrile. An ethanol fraction may be followed by extraction with a less
430	polar solvent, such as chloroform, to recover less polar bile acid derivatives (e.g.,
431	the fatty acid esters) and bile acids remaining in the lipophilic residue (Griffiths
432	et al., 2010). Batta et al. compared different methods to extract fecal bile acids
433	and sterols (Batta et al., 1999) to suggest a simplified method of extraction.
434	However, this is based on the assumption that fecal bile acids are unconjugated
435	(Setchell et al., 1983), which is not a valid assumption for many clinical
436	conditions, especially when subjects have been exposed to oral antibiotic
437	treatments that have affected the gut microbial ecosystem.
438 439	Lipidomics
440	Parallel to metabolomics, lipidomics emerged during the past decade as a
441	specialized discipline. Today virtually a full quantitative coverage of the lipidome

442

443

444

445

446

447

448

449

450

451

452

453

specialized discipline. Today virtually a full quantitative coverage of the lipidome is possible by mass spectrometric methods (Wenk, 2010).

In contrast to global metabolomics, lipidomic analysis mostly relies on lipid extracts prepared by extraction with apolar solvents like chloroform (Bligh & Dyer, 1959) or MTBE (Matyash, et al., 2008). The complexity of these extracts is greatly reduced compared to protein precipitates frequently applied for untargeted metabolomics as polar analytes are removed.

Up to now there are only a few studies of the fecal lipidome. Gregory et al. compared different extraction methods for lipidomics profiling by LC-HR-MS (high resolution MS) (Gregory et al., 2013). Stools of preterm infants were homogenized in water and lipophilic metabolites were extracted using either dichloromethane or a MTBE/hexafluoroisopropanol mixture. Additionally, the effect of pressure cycling on the extraction of lipid species was investigated.

454	Polar species like lyso-lipids showed a higher response after MTBE extraction
455	whereas increased responses were observed after dichloromethane extraction
456	for more hydrophobic species. The effect of pressure cycling does not show a
457	consistent increase of the lipid species response for both extraction methods.
458	Analysis by reversed phase chromatography couple to HR-MS was performed in
459	both positive and negative ion modes. 304 lipid species were identified by
460	unique monoisotopic m/z and retention time including 29
461	phosphatidylethanolamine (PE), 22 phosphatidylcholine (PC), 14
462	phosphatidylglycerol (PG), 88 triacylglycerol, 19 diacylglycerol and interestingly
463	50 ceramide species.
464	Recently, Davis and colleagues analyzed stools from mice fed a high fat or control
465	diet with or without induction of colitis-associated tumors (Davies et al., 2014).
466	Feces was homogenized by repeated freeze-thawing, minced to powder and
467	extracted with a modified Bligh and Dyer method. Samples were quantified by
468	shotgun lipidomics. However, mass spectra displayed very low intensities. The
469	selection of dioleoyl species of PE, PS, PI as internal standards has to be
470	considered as a potential source of error for quantification since these species
471	may be present in feces (PE and PI 36:2 were detected by Gregory et al. (Gregory
472	et al., 2013)). A general problem of this study and also a number of metabolomics
473	studies is the annotation of lipid species. Davis et al. showed detailed
474	annotations including even double bond positions of the fatty acyls. Such
475	structural differences usually may not be resolved by standard lipidomic or
476	metabolomics methods. Most methods determine the number of carbons and
477	number of double bonds with the acyl chains. Therefore, it is recommended to
478	annotate only structural details which are resolved by the analysis (Liebisch et

479	al., 2013). Moreover, common shorthand nomenclature provides a standard for
480	reporting and searching of lipid species including deposition in and retrieval
481	from databases.
482	Figure 2 presents the result of a lipidomic analysis of a fecal sample using a
483	method that has been applied to a variety of sample types such as plasma
484	(Sigruener et al., 2014), lipoproteins (Scherer, Böttcher, & Liebisch, 2011), cells
485	(Leidl, Liebisch, Richter, & Schmitz, 2008), cell culture (Binder, Liebisch,
486	Langmann, & Schmitz, 2006) and tissues (Hebel et al., 2015). Fecal samples were
487	homogenized including bead-based grinding and subjected to liquid extraction
488	according to Bligh and Dyer (Bligh & Dyer, 1959). Analysis by flow injection ESI-
489	MS/MS using lipid class specific head group scans revealed huge differences
490	between the individual samples. For example, we could find substantial
491	concentrations of PG in some samples whereas other samples showed only
492	minor PG content (Figure 2). Similar observations were made for other lipid
493	classes. Additionally, the method of homogenization and extraction may greatly
494	influence lipid species recovery. So sample preparation may determine whether
495	analysis of lipids is confined to "easily accessible" lipids or includes also "hardly
496	extractable" bacterial lipid. Bacterial lipids could be of particular interest since
497	they are used as chemotaxonomic parameter to classify and identify bacterial
498	(Busse, Denner, & Lubitz, 1996). However, bacterial lipids also increase the
499	complexity of the fecal lipidome. So a number of additional fatty acids usually not
500	or only present at low concentrations in mammalian cells are found in bacteria
501	such as branched chain, cyclopropane and hydroxyl fatty acids. In summary, an
502	accurate analysis of the fecal lipidome poses a great challenge especially due to
503	its high complexity and high variability.

NMR has also been used for structural analyses and quantification of lipid species including lipoproteins (Bou Khalil *et al.*, 2010; Sander *et al.*, 2013; AlaKorpela *et al.*, 1996; Fernando *et al.*, 2010). ³¹P-NMR is an attractive method to investigate phospholipid molecules due to the fact that all phospholipids have at least one phosphorous nucleus and this NMR active isotope occurs at a natural abundance of 100% and has got a high gyromagnetic ratio. Therefore, high resolution ³¹P-NMR spectroscopy has successfully been employed to determine the phospholipid composition of tissues and body fluids. Comprehensive reviews with many applications can be found in the literature (Schiller & Arnold, 2002; Schiller *et al.*, 2007). However, we could not identify any study that applied NMR spectroscopy for lipid investigations in fecal samples.

Final considerations

It is noteworthy that although extremely useful and widely used, as illustrated by this review, fecal materials reliably reflect the microbial activity of the distal colon, which is moderately representative of the rest of the gastro-intestinal tract. For example, although it is commonly accepted that SCFAs measured in feces are an indicator of colonic production by gut bacteria, it is important to remember that these metabolites are quickly absorbed by the intestinal membrane and an increased detection in feces may also reflect a poorer absorption. To overcome this issue, metabolic profiling techniques can be applied on luminal content collected in various sections of the gastro-intestinal track, although this implies a more invasive sample collection. Fecal water profiling by NMR spectroscopy has been widely referenced for numerous animal models such as rodents(Romick-Rosendale et al., 2009) and horses(Escalona et al., 2014) as well as humans,(Jacobs et al., 2008) providing a database for future

investigations. This is also extremely useful for similar evaluations performed on
fecal waters derived from in vitro batch cultures that simulate digestion by the
gut microbiota. Even if in vitro models are not a perfect representation of the
host-gut microbiota interplay, they provide a valuable overview of the microbial
activity in the gut in controlled conditions. For instance, metabolic profiling of
samples derived from such in vitro gut models has been recently applied to
compare the impact of diet on human and baboon gut microbial activity.(Frost,
Walton, Swann, & Psichas, 2014)
Another important consideration when analyzing feces metabolome, and
particularly fecal bile acids, is the irregularity of bile secretion and the
inhomogeneity of fecal samples as carefully studied by Setchell et al., who
demonstrated that this was strongly correlated with diet patterns (Setchell et al.,
1987). This is particularly relevant to human studies since humans tend to have
a defined regular feeding pattern with set time and number of meals per day
(unlike rodents that tend to feed all night, and from time to time during the day).
As a consequence, it is recommended to analyze aliquots of thoroughly
homogenized 4–5 day collections of feces.
Finally, since one of the main factors influencing the gut metabolic environment
is the microbiome, it is important to assess the microbial composition of the fecal
material when possible, using 16S rRNA sequencing or metagenomics when
possible, although these methods are not fully quantitative. Such metabolic
associations with gut bacteria should also be interpreted carefully as it is not
always possible to differentiate the host from the bacterial metabolic activity.
This is particularly true for amino acids that can be released by dead host cells or
be derived from protein digestion by host and bacterial enzymes. Typical

	ACCEPTED MANUSCRIPT
555	bacterial metabolites include SCFAs, some organic acids such as formate and by-
556	products of protein degradation such as indole. However, many fecal metabolites
557	derive from host-bacterial co-metabolism, which is typically the case for
558	secondary and tertiary bile acids.
559	
560	To summarize, the measurement of the fecal metabolome is becoming
561	increasingly popular as it provides an easy estimate of the diet-gut microbiota-
562	host metabolic interaction. However, there is a need for establishing clear
563	guidelines for fecal sample collection, preparation and analysis for metabolic
564	profiling. Both NMR and MS-based metabolic profiling are complementary
565	techniques and none of them to date is able to holistically assess the fecal
566	metabolome. Instead, it is recommended that a combination of methods is used
567	to extend the metabolic coverage.
568 569 570	Acknowledgements
571	The authors would like to thank Dr Lesli Hingstrup Larsen who provided the
572	sample for lipidomics analysis. This work was supported by the EU FP7
573	programme of research MyNewGut (613979).
574	

576 577	References
578	Ahmed, I., Greenwood, R., de Lacy Costello, B., Ratcliffe, N. M., & Probert, C. S.
579	(2013). An investigation of fecal volatile organic metabolites in irritable bowel
580	syndrome. <i>PLoS One, 8</i> (3), e58204. doi:10.1371/journal.pone.0058204
581	
582	Ala-Korpela, M., Posio, P., Mattila, S., Korhonen, A., & Williams, S. R. (1996).
583	Absolute quantification of phospholipid metabolites in brain-tissue extracts by 1
584	H NMR spectroscopy. <i>Journal of Magnetic Resonance, Series B</i> , 113(2), 184-189.
585	
586	Andrási, N., Helenkár, A., Vasanits-Zsigrai, A., Záray, G., & Molnár-Perl, I. (2011).
587	The role of the acquisition methods in the analysis of natural and synthetic
588	steroids and cholic acids by gas chromatography-mass spectrometry. Journal of
589	Chromatography. A, 1218(45), 8264–8272.
590	http://doi.org/10.1016/j.chroma.2011.09.006
591	
592	Batta, A. K., Salen, G., Rapole, K. R., Batta, M., Batta, P., Alberts, D., & Earnest, D.
593	(1999). Highly simplified method for gas-liquid chromatographic quantitation of
594	bile acids and sterols in human stool. Journal of Lipid Research, 40(6), 1148-
595	1154.
596	
597	Benno, P., Midtvedt, K., Alam, M., Collinder, E., Norin, E., & Midtvedt, T. (2005).
598	Examination of intestinal conversion of cholesterol to coprostanol in 633 healthy
599	subjects reveals an age- and sex-dependent pattern. Microbial Ecology in Health
600	and Disease, 17(4).

601	
602	Besten, den, G., van Eunen, K., Groen, A. K., & Venema, K. (2013). The role of
603	short-chain fatty acids in the interplay between diet, gut microbiota, and host
604	energy metabolism. Journal of Lipid Research, 54(9), 2325-2340.
605	
606	Bezabeh, T., Somorjai, R., Dolenko, B., Bryskina, N., Levin, B., Bernstein, C. N., &
607	Smith, I. C. P. (2009). Detecting colorectal cancer by 1H magnetic resonance
608	spectroscopy of fecal extracts. NMR in Biomedicine, 22(6), 593-600.
609	
610	Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C., & Brigidi, P. (2012).
611	Ageing of the human metaorganism: the microbial counterpart. Age, 34(1), 247-
612	267.
613	
614	Binder, M., Liebisch, G., Langmann, T., & Schmitz, G. (2006). Metabolic profiling of
615	glycerophospholipid synthesis in fibroblasts loaded with free cholesterol and
616	modified low density lipoproteins. Journal of Biological Chemistry, 281(31),
617	21869-21877.
618	
619	Bjerrum, J. T., Wang, Y., Hao, F., Coskun, M., Ludwig, C., Günther, U., & Nielsen, O.
620	H. (2014). Metabonomics of human fecal extracts characterize ulcerative colitis,
621	Crohn's disease and healthy individuals. <i>Metabolomics</i> , 11(1), 122-133.
622	http://doi.org/10.1007/s11306-014-0677-3
623	
624	Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and
625	purification. Canadian journal of biochemistry and physiology, 37(8), 911-917.

626	
627	Bou Khalil, M., Hou, W., Zhou, H., Elisma, F., Swayne, L. A., Blanchard, A. P., &
628	Figeys, D. (2010). Lipidomics era: accomplishments and challenges. Mass
629	spectrometry reviews, 29(6), 877-929.
630	
631	Busse, H. J., Denner, E. B., & Lubitz, W. (1996). Classification and identification of
632	bacteria: current approaches to an old problem. Overview of methods used in
633	bacterial systematics. <i>Journal of biotechnology</i> , 47(1), 3-38.
634	
635	Calvani, R., Brasili, E., Praticò, G., Capuani, G., Tomassini, A., Marini, F., &
636	Miccheli, A. (2014). Fecal and urinary NMR-based metabolomics unveil an aging
637	signature in mice. Experimental gerontology, 49, 5-11.
638	
639	Cao, G., Zhang, Y., Feng, J., Cai, H., Zhang, C., Ding, M., & Cai, B. (2011). A Rapid
640	and sensitive assay for determining the main components in processed Fructus
641	corni by UPLC–Q-TOF-MS. <i>Chromatographia</i> , 73(1-2), 135-141.
642	
643	Claesson, M. J., Cusack, S., O'Sullivan, O., Greene-Diniz, R., de Weerd, H., Flannery,
644	E., et al. (2011). Composition, variability, and temporal stability of the intestinal
645	microbiota of the elderly. Proceedings of the National Academy of Sciences, 108
646	Suppl 1, 4586–4591. http://doi.org/10.1073/pnas.1000097107
647	
648	Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O'Connor, E. M., Cusack, S., &
649	Fitzgerald, G. F. (2012). Gut microbiota composition correlates with diet and
650	health in the elderly Nature 488(7410) 178-184

651 Claus, S. P., & Swann, J. R. (2013). Nutrimetabonomics: Applications for 652 Nutritional Sciences, with Specific Reference to Gut Microbial Interactions. 653 Annual Review Food Science and Technology, 381-399. http://doi.org/10.1146/annurev-food-030212-182612 654 655 Claus, S. P., Ellero, S. L., Berger, B., Krause, L., Bruttin, A., Molina, J., et al. (2011). 656 657 Colonization-induced host-gut microbial metabolic interaction. *mBio*, 2(2). http://doi.org/10.1128/mBio.00271-10 658 659 Claus, S. P., Tsang, T. M., Wang, Y., Cloarec, O., Skordi, E., Martin, F.-P., et al. 660 661 (2008). Systemic multicompartmental effects of the gut microbiome on mouse 662 metabolic phenotypes. Molecular Systems Biology, 219. 4(1), 663 http://doi.org/10.1038/msb.2008.56 664 665 Crowther, J. S., Drasar, B. S., Goddard, P., Hill, M. J., & Johnson, K. (1973). The effect of a chemically defined diet on the faecal flora and faecal steroid 666 concentration. Gut, 14(10), 790-793. 667 668 669 David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, 670 B. E., et al. (2015). Diet rapidly and reproducibly alters the human gut 671 microbiome. *Nature*, 505(7484), 559–563. http://doi.org/10.1038/nature12820 672 673 Davies, J. M., Hua, H. U., Dheer, R., Martinez, M., Bhattacharya, S. K., & Abreu, M. T. 674 (2014). Stool Phospholipid Signature is Altered by Diet and Tumors. *PloS one*, 9(12), e114352, doi:10.1371/journal.pone.0114352 675

676	
677	Deda, O., Gika, H. G., Wilson, I. D., & Theodoridis, G. A. (2015). An overview of
678	fecal sample preparation for global metabolic profiling. Journal of pharmaceutical
679	and biomedical analysis, 113, 137-150.
680	
681	De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I. B., La Storia, A., Laghi, L., &
682	Turroni, S. (2015). High-level adherence to a Mediterranean diet beneficially
683	impacts the gut microbiota and associated metabolome. <i>Gut</i> , gutjnl-2015.
684	
685	Dixon, E., Clubb, C., Pittman, S., Ammann, L., Rasheed, Z., Kazmi, N., et al. (2011).
686	Solid-phase microextraction and the human fecal VOC metabolome. PLoS One,
687	6(4), e18471. doi:10.1371/journal.pone.0018471
688	
689	Escalona, E. E., Leng, J., Dona, A. C., Merrifield, C. A., Holmes, E., Proudman, C. J., &
690	Swann, J. R. (2015). Dominant components of the Thoroughbred metabolome
691	characterised by 1H-nuclear magnetic resonance spectroscopy: A metabolite
692	atlas of common biofluids. <i>Equine veterinary journal</i> , 47(6), 721-730.
693	
694	Evrard, E., & Janssen, G. (1968). Gas-liquid chromatographic determination of
695	human fecal bile acids. Journal of Lipid Research, 9(2), 226–236.
696	
697	Eyssen, H., & Parmentier, G. (1974). Biohydrogenation of sterols and fatty acids
698	by the intestinal microflora. The American Journal of Clinical Nutrition, 27(11),
699	1329–1340.
700	

701	Fernando, H., Kondraganti, S., Bhopale, K. K., Volk, D. E., Neerathilingam, M.,
702	Kaphalia, B. S., & Shakeel Ansari, G. A. (2010). 1H and 31P NMR lipidome of
703	ethanol-induced fatty liver. Alcoholism: Clinical and Experimental Research,
704	<i>34</i> (11), 1937-1947.
705	
706	Flint, H. J., Duncan, S. H., Scott, K. P., & Louis, P. (2015). Links between diet, gut
707	microbiota composition and gut metabolism. Proceedings of the Nutrition Society,
708	74(01), 13-22. http://doi.org/10.1017/S0029665114001463
709	
710	Frost, G. S., Walton, G. E., Swann, J. R., Psichas, A., Costabile, A., Johnson, L. P., &
711	Barraclough, T. G. (2014). Impacts of plant-based foods in Ancestral Hominin
712	diets on the metabolism and function of gut microbiota in vitro. Mbio, $5(3)$,
713	e00853-14.
714	
715	Gao, X., Pujos-Guillot, E., & Sébédio, J (2010). Development of a Quantitative
716	Metabolomic Approach to Study Clinical Human Fecal Water Metabolome Based
717	on Trimethylsilylation Derivatization and GC/MS Analysis. Analytical Chemistry,
718	82(15), 6447. doi:10.1021/ac1006552
719	
720	Gao, X., Pujos-Guillot, E., Martin, J., Galan, P., Juste, C., Jia, W., & Sébédio, J (2009).
721	Metabolite analysis of human fecal water by gas chromatography/mass
722	spectrometry with ethyl chloroformate derivatization. Analytical Biochemistry,
723	393(2), 163. doi:10.1016/j.ab.2009.06.036
724	

725 Gérard, P. (2013). Metabolism of cholesterol and bile acids by the gut microbiota. 726 Pathogens, 3(1), 14-24. http://doi.org/10.3390/pathogens3010014 727 Gregory, K. E., Bird, S. S., Gross, V. S., Marur, V. R., Lazarev, A. V., Walker, W. A., & 728 Kristal, B. S (2013). Method Development for Fecal Lipidomics Profiling. 729 730 *Analytical Chemistry*, 85(2), 1114. doi:10.1021/ac303011k 731 732 Griffiths, W. J., & Sjövall, J. (2010). Bile acids: analysis in biological fluids and 733 tissues. **Journal** Lipid Research. 51(1), 23-41. of http://doi.org/10.1194/jlr.R001941-JLR200 734 735 Grundy, S. M., Ahrens, E. H., & Davignon, J. (1969). The interaction of cholesterol 736 737 absorption and cholesterol synthesis in man. Journal of Lipid Research, 10(3), 738 304-315. 739 Grundy, S. M., & Ahrens, E. H. (1969). Measurements of cholesterol turnover, 740 741 synthesis, and absorption in man, carried out by isotope kinetic and sterol balance methods. *Journal of Lipid Research*, 10(1), 91–107. 742 743 Grundy, S. M., & Mok, H. Y. (1977). Determination of cholesterol absorption in 744 745 man by intestinal perfusion. *Journal of Lipid Research*, 18(2), 263–271. 746 747 Grundy, S. M., Ahrens, E. H., & Miettinen, T. A. (1965). Quantitative isolation and 748 gas--liquid chromatographic analysis of total fecal bile acids. Journal of Lipid 749 Research, 6, 397–410.

750	
751	Hagey, L. R., & Krasowski, M. D. (2013). Microbial biotransformations of bile
752	acids as detected by electrospray mass spectrometry. Advances in Nutrition
753	(Bethesda, Md.), 4(1), 29–35. http://doi.org/10.3945/an.112.003061
754	
755	Hagio, M., Matsumoto, M., Fukushima, M., Hara, H., & Ishizuka, S. (2009).
756	Improved analysis of bile acids in tissues and intestinal contents of rats using
757	LC/ESI-MS. Journal of Lipid Research, 50(1), 173-180.
758	http://doi.org/10.1194/jlr.D800041-JLR200
759	
760	Han, J., Lin, K., Sequeira, C., & Borchers, C. H. (2015). An isotope-labeled chemical
761	derivatization method for the quantitation of short-chain fatty acids in human
762	feces by liquid chromatography-tandem mass spectrometry. Analytica chimica
763	acta, 854, 86-94.
764	
765	Hebel, T., Eisinger, K., Neumeier, M., Rein-Fischboeck, L., Pohl, R., Meier, E. M., &
766	Krautbauer, S. (2015). Lipid abnormalities in alpha/beta2-syntrophin null mice
767	are independent from ABCA1. Biochimica et Biophysica Acta (BBA)-Molecular and
768	Cell Biology of Lipids, 1851(5), 527-536.
769	
770	Hofmann, A. F., & Eckmann, L. (2006). How bile acids confer gut mucosal
771	protection against bacteria. Proceedings of the National Academy of Sciences of
772	the United States of America, 103(12), 4333-4334.
773	http://doi.org/10.1073/pnas.0600780103
774	

775	Hofmann, A. F., & Hagey, L. R. (2008). Bile acids: chemistry, pathochemistry,
776	biology, pathobiology, and therapeutics. Cellular and Molecular Life Sciences
777	(CMLS), 65(16), 2461–2483. http://doi.org/10.1007/s00018-008-7568-6
778	
779	Hofmann, A. F. (2009). Bile acids: trying to understand their chemistry and
780	biology with the hope of helping patients. <i>Hepatology</i> , 49(5), 1403-1418.
781	
782	Hofmann, A. F., Hagey, L. R., & Krasowski, M. D. (2010). Bile salts of vertebrates:
783	structural variation and possible evolutionary significance. Journal of Lipid
784	Research, 51(2), 226–246. http://doi.org/10.1194/jlr.R000042
785	
786	Hong, Y. S., Ahn, Y. T., Park, J. C., Lee, J. H., Lee, H., Huh, C. S., & Hwang, G. S.
787	(2010). 1H NMR-based metabonomic assessment of probiotic effects in a colitis
788	mouse model. Archives of pharmacal research, 33(7), 1091-1101.
789	
790	Jacobs, D. M., Deltimple, N., van Velzen, E., Van Dorsten, F. A., Bingham, M.,
791	Vaughan, E. E., & van Duynhoven, J. (2008). 1H NMR metabolite profiling of feces
792	as a tool to assess the impact of nutrition on the human microbiome. NMR in
793	Biomedicine, 21(6), 615-626. http://doi.org/10.1002/nbm.1233
794	
795	Jiménez-Girón, A., Ibáñez, C., Cifuentes, A., Simó, C., Muñoz-González, I., Martín-
796	Álvarez, P. J., & Moreno-Arribas, M. (2015). Estudio del metaboloma fecal tras
797	el consumo moderado y continuado de vino tinro por individuos sanos.
798	

799 Kellogg, T. F., Knight, P. L., & Wostmann, B. S. (1970). Effect of bile acid 800 deconjugation on the fecal excretion of steroids. Journal of lipid research, 11(4), 801 362-366. 802 803 Korpela, J. T. (1982). Capillary gas-liquid chromatography of faecal free and 804 esterified neutral sterols. Scandinavian Journal of Clinical and Laboratory 805 *Investigation*, 42(6), 529–534. 806 807 Le Gall, G., Noor, S. O., Ridgway, K., Scovell, L., Jamieson, C., Johnson, I. T., et al. 808 (2011). Metabolomics of Fecal Extracts Detects Altered Metabolic Activity of Gut 809 Microbiota in Ulcerative Colitis and Irritable Bowel Syndrome. Journal of *Proteome Research*, 10(9), 4208–4218. http://doi.org/10.1021/pr2003598 810 811 Le Roy, C. I., Štšepetova, J., Sepp, E., Songisepp, E., Claus, S. P., & Mikelsaar, M. 812 813 (2015). New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay. *Oncotarget*, 6(31), 30545-30556. 814 815 Leidl, K., Liebisch, G., Richter, D., & Schmitz, G. (2008). Mass spectrometric 816 817 analysis of lipid species of human circulating blood cells. Biochimica et 818 Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1781(10), 655-664. 819 Li, J. V., Saric, J., Wang, Y., Keiser, J., Utzinger, J., & Holmes, E. (2011). 820 821 Chemometric analysis of biofluids from mice experimentally infected with Schistosoma mansoni. Parasites & Vectors, 4, 179. http://doi.org/10.1186/1756-822 823 3305-4-179

824	
825	Lichtenstein, A. H. (1990). Intestinal cholesterol metabolism. Annual medicine
826	22(1)
827	
828	Liebisch, G., Vizcaíno, J. A., Köfeler, H., Trötzmüller, M., Griffiths, W. J., Schmitz, G.,
829	& Wakelam, M. J. (2013). Shorthand notation for lipid structures derived from
830	mass spectrometry. Journal of lipid research, jlr-M033506.
831	
832	Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012).
833	Diversity, stability and resilience of the human gut microbiota. Nature,
834	489(7415), 220-230.
835	
836	Lütjohann, D., Meese, C. O., Crouse, J. R., & Bergmann, von, K. (1993). Evaluation
837	of deuterated cholesterol and deuterated sitostanol for measurement of
838	cholesterol absorption in humans. <i>Journal of Lipid Research</i> , 34(6), 1039–1046.
839	
840	Marchesi, J. R., Holmes, E., Khan, F., Kochhar, S., Scanlan, P., Shanahan, F., &
841	Wang, Y. (2007). Rapid and noninvasive metabonomic characterization of
842	inflammatory bowel disease. Journal of proteome research, 6(2), 546-551.
843	
844	Martin, FP. J., Sprenger, N., Montoliu, I., Rezzi, S., Kochhar, S., & Nicholson, J. K.
845	(2010). Dietary modulation of gut functional ecology studied by fecal
846	metabonomics. Journal of Proteome Research, 9(10), 5284–5295.
847	http://doi.org/10.1021/pr100554m
848	

849	Meiboom, S., & Gill, D. (1958). Modified Spin-Echo Method for Measuring Nuclear
850	Relaxation Times. Review of Scientific Instruments, 29(8), 688.
851	http://doi.org/10.1063/1.1716296
852	
853	Midtvedt, T., Lingaas, E., Carlstedt-Duke, B., Höverstad, T., Midtvedt, A. C.,
854	Saxerholt, H., et al. (1990). Intestinal microbial conversion of cholesterol to
855	coprostanol in man. Influence of antibiotics. APMIS: Acta Pathologica,
856	Microbiologica, Et Immunologica Scandinavica, 98(9), 839–844.
857	
858	Miettinen, T. A., Ahrens, E. H., & Grundy, S. M. (1965). Quantitative isolation and
859	gas-liquid chromatographic analysis of total dietary and fecal neutral steroids.
860	Journal of Lipid Research, 6, 411–424.
861	
862	Monleon, D., Morales, J. M., Barrasa, A., Lopez, J. A., Vazquez, C., & Celda, B.
863	(2009). Metabolite profiling of fecal water extracts from human colorectal
864	cancer. NMR in Biomedicine, 22(3), 342-348.
865	
866	Mukherji, A., Kobiita, A., Ye, T., & Chambon, P. (2013). Homeostasis in intestinal
867	epithelium is orchestrated by the circadian clock and microbiota cues
868	transduced by TLRs. <i>Cell</i> , <i>153</i> (4), 812–827.
869	http://doi.org/10.1016/j.cell.2013.04.020
870	
871	Ndagijimana, M., Laghi, L., Vitali, B., Placucci, G., Brigidi, P., & Guerzoni, M. E.
872	(2009). Effect of a synbiotic food consumption on human gut metabolic profiles

873	evaluated by 1 H Nuclear Magnetic Resonance spectroscopy. <i>International</i>
874	journal of food microbiology, 134(1), 147-153.
875	
876	O'Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. <i>EMBO</i>
877	Reports, 7(7), 688-693. http://doi.org/10.1038/sj.embor.7400731
878	
879	Owen, R. W., Thompson, M. H., & Hill, M. J. (1984). Analysis of metabolic profiles
880	of steroids in faeces of healthy subjects undergoing chenodeoxycholic acid
881	treatment by liquid-gel chromatography and gas-liquid chromatography-mass
882	spectrometry. Journal of Steroid Biochemistry, 21(5), 593-600.
883	
884	Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007).
885	Development of the human infant intestinal microbiota. <i>PLoS Biol</i> , <i>5</i> (7), e177.
886	
887	Perwaiz, S., Mignault, D., Tuchweber, B., & Yousef, I. M. (2002). Rapid and
888	improved method for the determination of bile acids in human feces using MS.
889	Lipids, 37(11), 1093–1100.
890	
891	Phua, L. C., Chue, X. P., Koh, P. K., Cheah, P. Y., Ho, H. K., & Chan, E. C. Y. (2014).
892	Non-invasive fecal metabonomic detection of colorectal cancer. <i>Cancer biology</i> &
893	therapy, 15(4), 389-397.
894	
895	Phua, L. C., Koh, P. K., Cheah, P. Y., Ho, H. K., & Chan, E. C. Y. (2013). Global gas
896	chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based

897	metabonomic profiling of lyophilized human feces. <i>Journal of Chromatography B</i> ,
898	937, 103-113.
899	
900	Ridlon, J. M., Kang, DJ., & Hylemon, P. B. (2006). Bile salt biotransformations by
901	human intestinal bacteria. Journal of Lipid Research, 47(2), 241–259.
902	http://doi.org/10.1194/jlr.R500013-JLR200
903	
904	Romick-Rosendale, L. E., Goodpaster, A. M., Hanwright, P. J., Patel, N. B., Wheeler,
905	E. T., Chona, D. L., & Kennedy, M. A. (2009). NMR-based metabonomics analysis
906	of mouse urine and fecal extracts following oral treatment with the broad-
907	spectrum antibiotic enrofloxacin (Baytril). Magnetic Resonance in Chemistry:
908	MRC, 47 Suppl 1, S36–46. http://doi.org/10.1002/mrc.2511
909	
910	Saric, J., Wang, Y., Li, J., Coen, M., Utzinger, J., Marchesi, J. R., et al. (2008). Species
911	variation in the fecal metabolome gives insight into differential gastrointestinal
912	function. Journal of Proteome Research, 7(1), 352–360.
913	http://doi.org/10.1021/pr070340k
914	
915	Sayin, S. I., Wahlström, A., Felin, J., Jäntti, S., Marschall, HU., Bamberg, K., et al.
916	(2013). Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of
917	Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. <i>Cell</i>
918	Metabolism, 17(2), 225–235. http://doi.org/10.1016/j.cmet.2013.01.003
919	

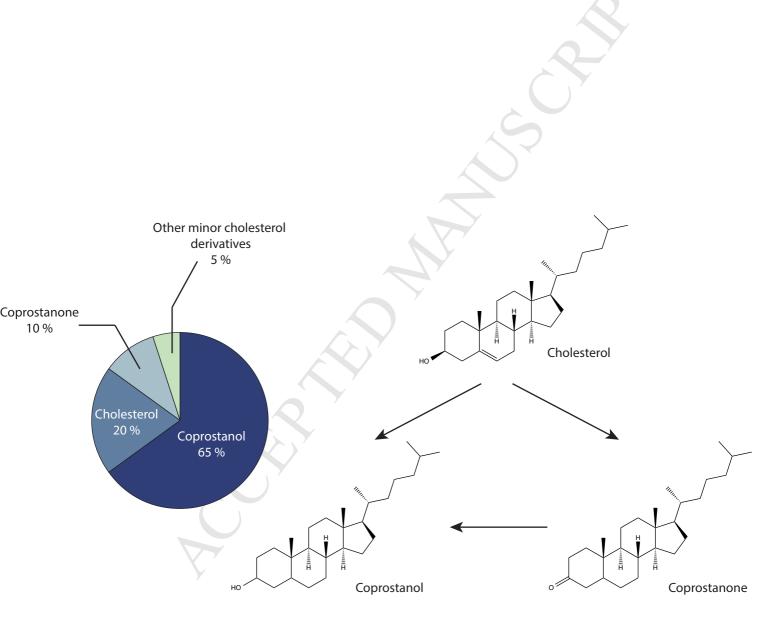
38

920	Scherer, M., Böttcher, A., & Liebisch, G. (2011). Lipid profiling of lipoproteins by
921	electrospray ionization tandem mass spectrometry. Biochimica et Biophysica
922	Acta (BBA)-Molecular and Cell Biology of Lipids, 1811(11), 918-924.
923	
924	Schiller, J., & Arnold, K. (2002). Application of high resolution 31P NMR
925	spectroscopy to the characterization of the phospholipid composition of tissues
926	and body fluids-a methodological review. Medical Science Monitor, 8(11),
927	MT205-MT222.
928	
929	Schiller, J., Muller, M., Fuchs, B., Arnold, K., & Huster, D. (2007). 31P NMR
930	spectroscopy of phospholipids: From micelles to membranes. Current Analytical
931	Chemistry, 3(4), 283-301.
932	
933	SScott, K. P., Duncan, S. H., & Flint, H. J. (2008). Dietary fibre and the gut
934	microbiota. Nutrition Bulletin, 33(3), 201-211.
935	
936	Setchell, K. D., Lawson, A. M., Tanida, N., & Sjövall, J. (1983). General methods for
937	the analysis of metabolic profiles of bile acids and related compounds in feces.
938	Journal of Lipid Research, 24(8), 1085-1100
939	
940	Sigruener, A., Kleber, M. E., Heimerl, S., Liebisch, G., Schmitz, G., & Maerz, W.
941	(2014). Glycerophospholipid and sphingolipid species and mortality: the
942	Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PloS one, 9(1),
943	e85724.
944	

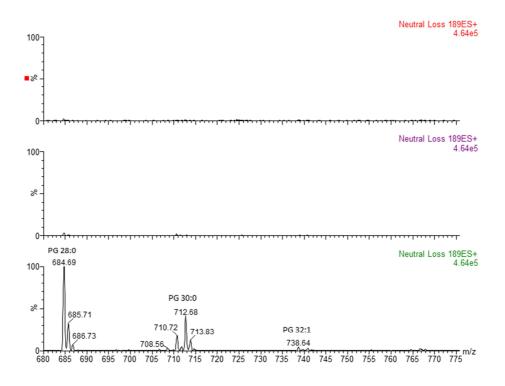
945	Sonnenburg, E. D., & Sonnenburg, J. L. (2014). Starving our Microbial Self: The
946	Deleterious Consequences of a Diet Deficient in Microbiota-Accessible
947	Carbohydrates. <i>Cell Metabolism</i> , <i>20</i> (5), 779–786.
948	http://doi.org/10.1016/j.cmet.2014.07.003
949	
950	Snog-Kjaer, A., Prange, I., & Dam, H. (1956). Conversion of cholesterol into
951	coprosterol by bacteria in vitro. <i>Journal of General Microbiology</i> , 14(2), 256–260.
952	
953	Spritz, N., Ahrens, E. H., & Grundy, S. (1965). Sterol balance in man as plasma
954	cholesterol concentrations are altered by exchanges of dietary fats. Journal of
955	clinical investigation, 44(9), 1482–1493.
956	
957	Story, J. A., & Furumoto, E. J. (1991). Bile acid analysis: methods and problems.
958	European Journal of Cancer Prevention : the Official Journal of the European
959	Cancer Prevention Organisation (ECP), 1 Suppl 2, 29–33.
960	
961	Su, X., Wang, N., Chen, D., Li, Y., Lu, Y., Huan, T., & Li, L. (2016). Dansylation
962	isotope labeling liquid chromatography mass spectrometry for parallel profiling
963	of human urinary and fecal submetabolomes. Analytica chimica acta, 903, 100-
964	109.
965	
966	Tian, Y., Zhang, L., Wang, Y., & Tang, H. (2011). Age-related topographical
967	metabolic signatures for the rat gastrointestinal contents. Journal of proteome
968	research, 11(2), 1397-1411.
969	

970 Trauner, M., Claudel, T., Fickert, P., Moustafa, T., & Wagner, M. (2010). Bile acids 971 as regulators of hepatic lipid and glucose metabolism. Digestive Diseases, 28(1), 972 220-224. 973 Voigt, R. M., Forsyth, C. B., Green, S. I., Mutlu, E., Engen, P., Vitaterna, M. H., et al. 974 975 (2014). Circadian disorganization alters intestinal microbiota. *PloS One*, 9(5), e97500. http://doi.org/10.1371/journal.pone.0097500 976 977 978 Weir, T. L., Manter, D. K., Sheflin, A. M., Barnett, B. A., Heuberger, A. L., & Ryan, E. 979 P. (2013). Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. *PloS one*, 8(8), e70803. 980 981 Wenk, M. R. (2010). Lipidomics: New Tools and Applications. Cell, 143(6), 888-982 983 895. http://doi.org/10.1016/j.cell.2010.11.033 984 Wu, J., An, Y., Yao, J., Wang, Y., & Tang, H. (2010). An optimised sample 985 986 preparation method for NMR-based faecal metabonomic analysis. Analyst, 135(5), 1023-1030. 987 988 Yap, I. K. S., Li, J. V., Saric, J., Martin, F.-P., Davies, H., Wang, Y., et al. (2008). 989 990 Metabonomic and microbiological analysis of the dynamic effect of vancomycin-991 induced gut microbiota modification in the mouse. Journal of Proteome Research, 992 7(9), 3718–3728. http://doi.org/10.1021/pr700864x 993

994	Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G.,
995	Contreras, M., et al. (2012). Human gut microbiome viewed across age and
996	geography. Nature, 486(7402), 222–227. http://doi.org/10.1038/nature11053
997	
998	Zhao, Y. Y., Zhang, L., Long, F. Y., Cheng, X. L., Bai, X., Wei, F., & Lin, R. C. (2013).
999	UPLC-Q-TOF/HSMS/MS E-based metabonomics for adenine-induced changes in
1000	metabolic profiles of rat faeces and intervention effects of ergosta-4, 6, 8 (14),
1001	22-tetraen-3-one. Chemico-biological interactions, 201(1), 31-38.
1002	
1003	Zhao, Y., Wu, J., Li, J. V., Zhou, N. Y., Tang, H., & Wang, Y. (2013). Gut microbiota
1004	composition modifies fecal metabolic profiles in mice. Journal of proteome
1005	research, 12(6), 2987-2999.
1006	
1007	Zheng, X., Qiu, Y., Zhong, W., Baxter, S., Su, M., Li, Q., & Zeisel, S. H. (2013). A
1008	targeted metabolomic protocol for short-chain fatty acids and branched-chain
1009	amino acids. Metabolomics, 9(4), 818-827.
1010	
1011	


1012	FIGURE CAPTIONS
1013	Figure 1: Estimated proportion of fecal cholesterol derivatives in humans.
1014	
1015	Figure 2 : Neutral loss (NL) of 189 of lipid extracts prepared from fecal samples.
1016	Suspensions of human fecal samples in water/methanol (1/1) were subjected to
1017	bead-based homogenization. Homogenates were extracted according to Bligh
1018	and Dyer (Bligh & DYER, 1959). Crude lipid extracts were analyzed by direct
1019	flow injection analysis as described previously (Matyash et al., 2008). Displayed
1020	are NL 189 spectra, specific for phosphatidylglycerol (PG), of three different
1021	samples normalized to the highest intensity.
1022	samples normanged to the ingless intensity.
1022	
1023	Table 1: Summary of published studies applying metabolomics to study fecal
1024	samples using NMR and MS platforms. Summary of protocols and main outcomes
1025	are included.
1026	Key: GC-FID: Gas chromatography- Flame ionization detector; GC-MS: Gas
1020	key: GC-FID: Gas chromatography- riame formzation detector; GC-MS: Gas
1027	chromatography-Mass spectrometry; LC-MS: Liquid chromatography-Mass
1028	spectrometry; UPLC-MS: Ultra-Performance Liquid Chromatography-Mass
1029	spectrometry

Analytical technique	Study aim	Sample preparation overview	Material / buffer	Measurement	Main results	References
NMR 400 MHz	Aging in mice	1:4 (wN/Av) feces in deuterated PBS + two filtration step	60 μL deuterated PBS containing 2 mM TSP in 600 μL of extract	TOCSY & HSQC	Aging induces ↑ 4- hydroxyphenylacetate, histidine, formate, succinate and ↓ α- ketoisocaproate, α- ketoisovalerate, -hydroxybutyrate, bile salts, isoleucine, methionine	Calvani et al., 2014
	Colorectal cancer human	1:3 (wN/Av) feces in deuterated PBS + vortexing and centrifugation	50 μL TSP (4 mM) in D2O added in 500 μL supernatant	N/A	N/A	Bezabeh et al. 2009
NMR 500 MHz	Experimental optimisation, mice	1:10 mg.µL-1 feces-to-buffer ratio, tissuelyser	N/A	COSY, TOCSY, HSQC, HMBC	Identification of 40 metabolites	Wu el al., 2010
NMR 600 MHz	Ulcetative colitis activity, humans	1:2 (WN/Av) feces to PBS, vortexing, cenrifugation and filtration	4 μL of D2ON/A500 μM TSP with 40 μL of fecal extract	CPMG	Active UC induces BCAAs, lysine, alanine, taurine	Bjerrum et al. 2014
	Antiobiotic treatment (gentamicine, ceftriaxone), mice	1:10 feces to PBS, freeze-thaw treatment, tissuelysr, centrifugation	30% D2O, 0.002% TSP, 0.03% of Na3N (wN/Av)	COSY, TOCSY, JRES, HSQC, HMBC	Antibiotic induces ↑ oligosacharides. phenolic acids and ♥ SCFAs, uracil, hypoxanthine	Zhao et al., 2013
	Age, rat	1:10 feces to PBS, vortexing, freeze— thaw, tissuelyser, centrifugation	0.1 M K2HPO4N/ANaH2PO4, pH = 7.4, containing 10% D2O, 0.58 mM TSP	COSY, TOCSY, HSQC, HMBC, DOSY	Aging induces ♥ arabinose, xylose, galactose, arabinoxylan, propionate and inosine and ↑ taurine, xylose, arabinose, galactose, arabinoxylans	Tian et al., 2012
	Infection Schistosoma	2 fecal pellets homogenized in	PBS containing 0.01% TSP	CPMG, COSY, TOCSY	Infection induces 1 5- Aminovalerate, SCFAs	Li et al., 2011


<i>mansoni,</i> mice	700 μL PBS, sonication, centrifugation			(propionate)	
IBS and UC, human	1:50 (wN/Av) feces to PBS, centrifugation, filtration	deuterated PBS containing 1 mM TSP	COSY, HSQC, HMBC	UC induces ↑ taurine and cadaverine, IBS induces ↑ bile acids and ◆ BCFAs	Le Gall et al., 2011
ProN/Aprebiotics, mice	1:12 (wN/Av) mashed feces to PBS, centrifugation	60 μL DSS (5 mM) in D20 added in 600 μL supernatant	TOCSY,HMBC,HSQC	Prebiotic induces ♥ threonine, alanine, glutamate, glutamine, aspartate, lysine, lycine, butyrate, uracil, hypoxanthine and ↑ monosaccharides, glucose, trimethylamine. Pre and probiotic ♥ trimethylamine and ↑ acetate, butyrate, glutamine	Hong et al., 2010
Colorectal cancer, human	1:2 feces to distilled water, homogenization, freezing, thawing, centrifugation	100 μL D2O to 500 μL fecal water	TOCSY	Cancer induces acetate, butyrate	Monleon et al., 2009
Grape juce and wine extract consumption, human	1:20 (wN/Av) feces to cold D2O or CD3OD, vortexing, centrifugation	D2O or CD3OD containing 1 mM TSP	CPMG	Grape juce consumption + wine induces induces isobutyrate	Jacobs et al., 2008
Effect of Species, storage, lyophilization, sonication, filatrtiona nd homognisation	N/A	N/A	COSY, TOCSY, HSQC, HMBC	Storage: ↑ alanine, glutamate, threonine, aspartic acid, BCAAs, glucose. Lyophilization: ↑ BCAAs and ↓ succinate, SCFAs. Sonication: ↑ uracil, glucose and ↓ SCFAs	Saric et al., 2008
UC, human	1:2 (wN/Av) feces to PBS, vortexing, filtration, centrifugation	200 μL buffer (10% D2O & 0.01% TSP) in 400 μL fecal water	COSY, TOCSY	UC induces ♥ acetate, butyrate, methylamine, TMA and ↑ isoleucine, leucine, lusine	Marchesi et al., 2007

NMR 700 MHz	Lactobacillus	1:2 (wN/Av) feces to detarated PBS, tissue lyser, centrifugation	Fecal water extracted in 9:1 D2ON/AH2O and 0.05 % TSP	Noesy	L. helveticus induces ↑ butyrate, lactate and incresed Lactobacillus level induces ↑ phenylalanine, tyrosine, lysine, lactate, propionate, valine, leucine, isoleucine, butyrate, acetate.	Le Roy et al., 2015
NMR 850 MHz	Baytrill treatment, mice	1:2 (wN/Av) feces to PBS, vortexing, centrifugation	200 μL buffer 10% D2O and 0.01% TSP in 400 μL fecal water	CPMG	Treament induces ♥ alanine, butyrate, isoleucine, leucine, propionate, threonine, valine and ↑ urea	Romick- Rosendale et al., 2009
GC-MS	Colorectal cancer human	oximation and silylation	lyophilized human feces	N/A	Cancer patients butyrate, poly and monounsaturated fatty acids, ursodeoxycholic acid and ↑ acetate, amino acids	Weir et al., 2013
	VOCs irritable bowel syndrome, active Crohn's disease, ulcerative colitis	SPME	human feces	N/A	240 metabolites; esters of short chain fatty acids, cyclohexanecarboxylic acid associated with irritable bowel syndrome	Ahmed, Greenwood, de Lacy Costello, Ratcliffe, & Probert, 2013
	technical paper	trimethylsilylation	human fecal water	N/A	133 compounds structurally confirmed; 33 quantified	Gao, Pujos- Guillot, & Sébédio, 2010
	technical paper	ethyl chloroformate derivatization	human fecal water	N/A	73 compounds identified; 34 validated by reference standards	Gao et al., 2009
GC-TOF-MS	technical paper	oximation and silylation	lyophilized human feces	N/A	107 metabolites matched with mass spectra libraries, influence of blood on fecal metabolome	Phua, Koh, Cheah, Ho, & Chan, 2013
	Colorectal cancer human	oximation and silylation	lyophilized human feces	N/A	fecal metabolomic profiles of patients clearly differ from healthy subjects	Phua et al., 2014
GC-MS, GC-FID	VOCs, technical paper	SPME	human feces	N/A	evaluation of eight different commercially available SPME	Dixon et al., 2011

					fibers	
UPLC- MSN/ATOF-MS	liver cirrhosis, hepatocellular carcinoma	homogenization, centrifugation, filtration	human feces	N/A	Cancer patients ♥ chenodeoxycholic acid, 7- ketolithocholic acid, urobilinogen, urobilin and ↑ lysophosphatidylcholine (LPC) 16:0 and 18:0	Cao et al., 2011
UHPLC-TOF-MS	Effect of consumption of red wine	mixing with saline solution, centrifugation, filtration	human feces	N/A	37 metabolites related to wine intake	Jiménez-Girón et al., 2015
UPLC-Q-TOF-MS	chronic renal failure	homogenization, extraction with acetonitrile	rat feces	N/A	renal failure ↑ chenodeoxychrolic acid, palmitic acid, adenine, phytosphingosine, monoglycerol 24:1, 12-hydroxy- 3-oxochola- dienic acid, lysophosphatidylethanolamine 18:2 and 16:0 and ↓ 7- ketolithocholic acid	Zhao, Cheng, Wei, Bai, & Lin, 2012
LC-MS, LC-UV	technical paper	Dried fecal samples extraction with water and acetonitrile, derivatization with dansyl chloride	human feces	N/A	67 metabolites (mainly amino acids) identified	Su et al., 2015

Minoor fecal cholesterol derivatives

