We construct a simple phenomenological diffuse-interface model for
composition-induced nanopatterning during ion sputtering of alloys. In
simulations, this model reproduces without difficulties the high-aspect ratio
structures and tilted pillars observed in experiments. We investigate the time
evolution of the pillar height, both by simulations and by {\it in situ}
ellipsometry. The analysis of the simulation results yields a good
understanding of the transitions between different growth regimes and supports
the role of segregation in the pattern-formation process.Comment: 10 pages, 3 figures; minor revisions with respect to first version;
figures nicened; journal ref. adde