2,474 research outputs found

    Structure of an intraplate fold-and-thrust belt: The Iberian Chain. A synthesis

    Get PDF
    The Iberian Chain is a complex intraplate fold-and-thrust belt resulting from the convergence between the Eurasian, Iberian and African plates during the late Eocene to the Miocene. The main trend of its contractionalstructures is NW-SE, but E-W, NE-SW and N-S-trending structures are also present. The boundaries of the chain with its surrounding foreland basins are always thrusts. The North-Iberian Thrust separates thechain from the Ebro Basin to the North, while the Serranía de Cuenca Thrust makes the SE boundary of the chain, separating it from the Tajo Basin and La Mancha foreland areas. Between these thrusts, thecontractional structure is basement-involved, while South of the Serranía de Cuenca Thrust only Mesozoic and Cenozoic rocks are involved in the thrust-system, detached in the evaporitic Triassic materials. Twoparts can be differentiated considering the major structure of the chain. The western and central areas hold two major anticlinoriums separated by the Almazån Synclinorium. East of the Teruel Depression, E-WstrikingN-verging thrusts in the North, and NW-SE-striking S-verging thrusts in the center and South are the dominant structures.The crust thickened during the Cenozoic contraction generating a mean crustal thickening of about 5km. The horizontal shortening obtained from cross-sections is 32km, and from a density-gravity section of 57.5km.These two values may be considered end values.The relief of the Iberian Chain has a strong areal coincidence with the contractional structures and the thickened crust, indicating that they are genetically related

    Structure of an intraplate fold-and-thrust belt: The Iberian Chain. A synthesis

    Get PDF
    The Iberian Chain is a complex intraplate fold-and-thrust belt resulting from the convergence between the Eurasian, Iberian and African plates during the late Eocene to the Miocene. The main trend of its contractional structures is NW-SE, but E-W, NE-SW and N-S-trending structures are also present. The boundaries of the chain with its surrounding foreland basins are always thrusts. The North-Iberian Thrust separates the chain from the Ebro Basin to the North, while the SerranĂ­a de Cuenca Thrust makes the SE boundary of the chain, separating it from the Tajo Basin and La Mancha foreland areas. Between these thrusts, the contractional structure is basement-involved, while South of the SerranĂ­a de Cuenca Thrust only Mesozoic and Cenozoic rocks are involved in the thrust-system, detached in the evaporitic Triassic materials. Two parts can be differentiated considering the major structure of the chain. The western and central areas hold two major anticlinoriums separated by the AlmazĂĄn Synclinorium. East of the Teruel Depression, E-Wstriking N-verging thrusts in the North, and NW-SE-striking S-verging thrusts in the center and South are the dominant structures. The crust thickened during the Cenozoic contraction generating a mean crustal thickening of about 5km. The horizontal shortening obtained from cross-sections is 32km, and from a density-gravity section of 57.5km. These two values may be considered end values. The relief of the Iberian Chain has a strong areal coincidence with the contractional structures and the thickened crust, indicating that they are genetically related

    The Series on "How to Deal with Early Stage Lung Cancer: Sublobar Resections as A Possible Choice (Report of the 2019 Spring Meeting of Italian Society of Thoracic Surgery)?"

    Get PDF
    This series is the result of the work of different specialists from all around Italy and from Fudan University in Shanghai, who gathered in Milan on April 2019, to attend the Spring Meeting of Italian Society of Thoracic Surgery (SICT). The meeting discussed new evidences suggesting sublobar resection as the elective surgical treatment of early stage lung cancer

    Structure of an inverted basin from subsurface and field data : the Late Jurassic- Early Cretaceous Maestrat Basin (Iberian Chain)

    Get PDF
    The Maestrat Basin experienced two main rifting events: Late Permian-Late Triassic and Late Jurassic-Early Cretaceous, and was inverted during the Cenozoic Alpine orogeny. During the inversion, an E-W-trending, N-verging fold-and-thrust belt developed along its northern margin, detached in the Triassic evaporites, while southwards it also involved the Variscan basement. A structural study of the transition between these two areas is presented, using 2D seismic profiles, exploration wells and field data, to characterize its evolution during the Mesozoic extension and the Cenozoic contraction.The S-dipping Maestrat Basement Thrust traverses the Maestrat Basin from E to W; it is the result of the Cenozoic inversion of the lower segment-within the acoustic basement-of the Mesozoic extensional fault system that generated the Salzedella Sub-basin. The syn-rift Lower Cretaceous rocks filling the Salzedella Sub-basin thicken progressively northwards, from 350m to 1100m. During the inversion, a wide uplifted area-40km wide in the N-S direction-developed in the hanging wall of the Maestrat Basement Thrust. This uplifted area is limited to the north by the E-W-trending Calders monocline, whose limb is about 13km wide in its central part, dips about 5ÂșN, and generates a vertical tectonic step of 800-1000m. We interpreted it as a fault-bend fold; therefore, a flat-ramp-flat geometry is assumed in depth for the Maestrat Basement Thrust. The northern synformal hinge of the Calders monocline coincides with the transition from thick-skinned to thin-skinned areas. The vast uplifted area and the low-dip of the monocline suggest a very low-dip for the basement ramp, rooted in the upper crust. The Calders monocline narrows and disappears laterally, linking to the outcrop of the Maestrat Basement Thrust.The evaporitic Middle Muschelkalk detachment conditioned the structural style. Some salt structures are also related to it; they developed during the Late Triassic extension, as deduced from the Keuper seismic reflectors that onlap the folded Upper Muschelkalk and form growth strata above some basement normal faults

    Preface

    Get PDF
    In the Iberian Peninsula, five official languages co-exist: Basque, Catalan,Galician, Portuguese and Spanish. Fostering multi-linguality and establishingstrong links among the linguistic resources developed for each language of theregion is essential. Additionally, a lack of published resources in some of theselanguages exists. Such lack propitiates a strong inter-relation between themand higher resourced languages, such as English and Spanish.In order to favour the intra-relation among the peninsular languages as wellas the inter-relation between them and foreign languages, different purposemultilingual NLP tools need to be developed.Interesting topics to beresearched include, among others, analysis of parallel and comparable corpora,development of multilingual resources, and language analysis in bilingualenvironments and within dialectal variations.With the aim of solving these tasks, statistical, linguistic and hybrid ap-proaches are proposed. Therefore, the workshop addresses researchers fromdifferent fields of natural language processing/computational linguistics: textmining, machine learning, pattern recognition, information retrieval andmachine translation.The research in this proceedings includes work in all of the official languages ofthe Iberian Peninsula. Moreover, interactions with English are also included.Wikipedia has shown to be an interesting resource for different tasks and hasbeen analysed or exploited in some contributions.Most of the regions of the Peninsula are represented by the authors of thecontributions. The distribution is as follows: Basque Country (2 authors),Catalonia (7 authors), Galicia (4 authors), Portugal (2 authors) and Valencia(5 authors). Interestingly, those regions where Spanish is the only officiallanguage are not represented. It is worth noting that authors working beyondthe Peninsula have also contributed to this workshop, including: Argentina (3authors), Finland (1 author), France (2 authors), Mexico (1 author), Singapore(1 author), and USA (6 authors)

    Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection

    Get PDF
    Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ~18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions
    • 

    corecore