35 research outputs found

    Capacity of health facilities for diagnosis and treatment of HIV/AIDS in Ethiopia

    Get PDF
    Background: There are dearth of literature on the capacity of the health system to diagnose and treat HIV/AIDS in Ethiopia. In this study we evaluated the capacity of health facilities for HIV/AIDS care, its spatial distribution and variations by regions and zones in Ethiopia. Methods: We analyzed the Service Provision Assessment plus (SPA+) survey data that were collected in 2014 in all regions of Ethiopia. We assessed structural, process and overall capacity of the health system based on the Donabedian quality of care model. We included 5 structural and 8 process indicators and overall capacity score was constructed by taking the average of all indicators. Multiple linear regression was done using STATA 14 to assess the association of the location and types of health facilities with overall capacity score. Maps displaying the average capacity score at Zonal level were produced using ArcGIS Desktop v10.3 (Environmental Systems Research Institute Inc., Redlands CA, USA). Results: A total of 873 health facilities were included in the analysis. Less than 5% of the private facilities provided antiretroviral therapy (ART); had national ART guideline, baseline CD4 count or viral load and tuberculosis screening mechanisms. Nearly one-third of the health centers (34.9%) provided ART. Public hospitals have better capacity score (77.1%) than health centers (45.9%) and private health facilities (24.8%). The overall capacity score for urban facilities (57.1%) was higher than that of the rural (38.2%) health facilities (β = 15.4, 95% CI: 11.7, 19.2). Health centers (β = − 21.4, 95% CI: -25.4, − 17.4) and private health facilities (β = − 50.9, 95% CI: -54.8, − 47.1) had lower overall capacity score than hospitals. Facilities in Somali (β = − 13.8, 95% CI: -20.6, − 7.0) and SNNPR (β = − 5.0, 95% CI: -9.8, − 0.1) regions had lower overall capacity score than facilities in the Oromia region. Zones located in emerging regions such as Gambella and Benishangul Gumz and in remote areas of Oromia and SNNPR had lower capacity score in terms of process indicators. Conclusions: There is a significant geographical heterogeneity on the capacity of health facilities for HIV/AIDS care and treatment in Ethiopia. Targeted capacity improvement initiatives are recommended with focus on health centers and private health facilities, and emerging Regions and the rural and remote areas

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Nomenclature for kidney function and disease: report of a Kidney Disease:Improving Global Outcomes (KDIGO) Consensus Conference

    Get PDF
    The worldwide burden of kidney disease is rising, but public awareness remains limited, underscoring the need for more effective communication by stakeholders in the kidney health community. Despite this need for clarity, the nomenclature for describing kidney function and disease lacks uniformity. In June 2019, Kidney Disease: Improving Global Outcomes (KDIGO) convened a Consensus Conference with the goal of standardizing and refining the nomenclature used in the English language to describe kidney function and disease, and of developing a glossary that could be used in scientific publications. Guiding principles of the conference were that the revised nomenclature should be patient-centered, precise, and consistent with nomenclature used in the KDIGO guidelines. Conference attendees reached general consensus on the following recommendations: (i) to use "kidney" rather than "renal" or "nephro-" when referring to kidney disease and kidney function; (ii) to use "kidney failure" with appropriate descriptions of presence or absence of symptoms, signs, and treatment, rather than "end-stage kidney disease"; (iii) to use the KDIGO definition and classification of acute kidney diseases and disorders (AKD) and acute kidney injury (AKI), rather than alternative descriptions, to define and classify severity of AKD and AKI; (iv) to use the KDIGO definition and classification of chronic kidney disease (CKD) rather than alternative descriptions to define and classify severity of CKD; and (v) to use specific kidney measures, such as albuminuria or decreased glomerular filtration rate (GFR), rather than "abnormal" or "reduced" kidney function to describe alterations in kidney structure and function. A proposed 5-part glossary contains specific items for which there was general agreement. Conference attendees acknowledged limitations of the recommendations and glossary, but they considered standardization of scientific nomenclature to be essential for improving communication

    Estimated Glomerular Filtration Rate, Albuminuria, and Adverse Outcomes. An Individual-Participant Data Meta-Analysis

    Get PDF
    IMPORTANCE: Chronic kidney disease (low estimated glomerular filtration rate [eGFR] or albuminuria) affects approximately 14% of adults in the US. OBJECTIVE: To evaluate associations of lower eGFR based on creatinine alone, lower eGFR based on creatinine combined with cystatin C, and more severe albuminuria with adverse kidney outcomes, cardiovascular outcomes, and other health outcomes. DESIGN, SETTING, AND PARTICIPANTS: Individual-participant data meta-analysis of 27 503 140 individuals from 114 global cohorts (eGFR based on creatinine alone) and 720 736 individuals from 20 cohorts (eGFR based on creatinine and cystatin C) and 9 067 753 individuals from 114 cohorts (albuminuria) from 1980 to 2021. EXPOSURES: The Chronic Kidney Disease Epidemiology Collaboration 2021 equations for eGFR based on creatinine alone and eGFR based on creatinine and cystatin C; and albuminuria estimated as urine albumin to creatinine ratio (UACR). MAIN OUTCOMES AND MEASURES: The risk of kidney failure requiring replacement therapy, all-cause mortality, cardiovascular mortality, acute kidney injury, any hospitalization, coronary heart disease, stroke, heart failure, atrial fibrillation, and peripheral artery disease. The analyses were performed within each cohort and summarized with random-effects meta-analyses. RESULTS: Within the population using eGFR based on creatinine alone (mean age, 54 years [SD, 17 years]; 51% were women; mean follow-up time, 4.8 years [SD, 3.3 years]), the mean eGFR was 90 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 11 mg/g (IQR, 8-16 mg/g). Within the population using eGFR based on creatinine and cystatin C (mean age, 59 years [SD, 12 years]; 53% were women; mean follow-up time, 10.8 years [SD, 4.1 years]), the mean eGFR was 88 mL/min/1.73 m2 (SD, 22 mL/min/1.73 m2) and the median UACR was 9 mg/g (IQR, 6-18 mg/g). Lower eGFR (whether based on creatinine alone or based on creatinine and cystatin C) and higher UACR were each significantly associated with higher risk for each of the 10 adverse outcomes, including those in the mildest categories of chronic kidney disease. For example, among people with a UACR less than 10 mg/g, an eGFR of 45 to 59 mL/min/1.73 m2 based on creatinine alone was associated with significantly higher hospitalization rates compared with an eGFR of 90 to 104 mL/min/1.73 m2 (adjusted hazard ratio, 1.3 [95% CI, 1.2-1.3]; 161 vs 79 events per 1000 person-years; excess absolute risk, 22 events per 1000 person-years [95% CI, 19-25 events per 1000 person-years]). CONCLUSIONS AND RELEVANCE: In this retrospective analysis of 114 cohorts, lower eGFR based on creatinine alone, lower eGFR based on creatinine and cystatin C, and more severe UACR were each associated with increased rates of 10 adverse outcomes, including adverse kidney outcomes, cardiovascular diseases, and hospitalizations

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Serum potassium and adverse outcomes across the range of kidney function: a CKD Prognosis Consortium meta-analysis.

    Get PDF
    Aims: Both hypo- and hyperkalaemia can have immediate deleterious physiological effects, and less is known about long-term risks. The objective was to determine the risks of all-cause mortality, cardiovascular mortality, and end-stage renal disease associated with potassium levels across the range of kidney function and evaluate for consistency across cohorts in a global consortium. Methods and results: We performed an individual-level data meta-analysis of 27 international cohorts [10 general population, 7 high cardiovascular risk, and 10 chronic kidney disease (CKD)] in the CKD Prognosis Consortium. We used Cox regression followed by random-effects meta-analysis to assess the relationship between baseline potassium and adverse outcomes, adjusted for demographic and clinical characteristics, overall and across strata of estimated glomerular filtration rate (eGFR) and albuminuria. We included 1 217 986 participants followed up for a mean of 6.9 years. The average age was 55 ± 16 years, average eGFR was 83 ± 23 mL/min/1.73 m2, and 17% had moderate- to-severe increased albuminuria levels. The mean baseline potassium was 4.2 ± 0.4 mmol/L. The risk of serum potassium of >5.5 mmol/L was related to lower eGFR and higher albuminuria. The risk relationship between potassium levels and adverse outcomes was U-shaped, with the lowest risk at serum potassium of 4-4.5 mmol/L. Compared with a reference of 4.2 mmol/L, the adjusted hazard ratio for all-cause mortality was 1.22 [95% confidence interval (CI) 1.15-1.29] at 5.5 mmol/L and 1.49 (95% CI 1.26-1.76) at 3.0 mmol/L. Risks were similar by eGFR, albuminuria, renin-angiotensin-aldosterone system inhibitor use, and across cohorts. Conclusions: Outpatient potassium levels both above and below the normal range are consistently associated with adverse outcomes, with similar risk relationships across eGFR and albuminuria

    Action plan for determining and monitoring the prevalence of chronic kidney disease

    No full text
    Chronic kidney disease (CKD) continues to remain high globally, up to 13.4% by one estimate. Although the number, geographic distribution, size, and quality of the studies examining CKD prevalence and incidence have increased over the past decade, the global capacity for CKD surveillance is still far less developed than that for hypertension, diabetes, and cardiovascular disease. Estimating CKD prevalence is constrained by inadequate standardization of serum creatinine and urine albumin assays, heterogeneity in study designs, lack of national registries in many countries, incomplete adoption of disease classification guidelines, and inconsistent use of evidence-based equations for estimating glomerular filtration rate. Goal 1: Improve monitoring of CKD prevalence. To achieve this, disseminate the rationale for CKD prevalence monitoring, achieve uniform measurement of CKD markers, promote inclusion of CKD measurements in all large chronic disease cohorts and health surveys, harness administrative claims data for CKD surveillance, and incorporate the new CKD classification system in the International Classification of Diseases. Goal 2: Improve CKD monitoring of populations underrepresented in studies to date. To achieve this, establish registries of chronic dialysis and transplantation in all countries; establish registries for special CKD groups, such as children, patients with rare diseases, and patients with special etiologies of CKD. Goal 3: Improve identification of individuals with CKD. To achieve this, implement the Kidney Disease: Improving Global Outcomes guidelines for screening and testing, carry out randomized studies on screening strategies, ensure that estimated glomerular filtration rate is reported with all reports of serum creatinine, and leverage new software for identification and follow-up of CKD cases. Copyright (C) 2017, International Society of Nephrology. Published by Elsevier Inc. All rights reserved
    corecore