15 research outputs found

    Unpublished Mediterranean and Black Sea records of marine alien, cryptogenic, and neonative species

    Get PDF
    To enrich spatio-temporal information on the distribution of alien, cryptogenic, and neonative species in the Mediterranean and the Black Sea, a collective effort by 173 marine scientists was made to provide unpublished records and make them open access to the scientific community. Through this effort, we collected and harmonized a dataset of 12,649 records. It includes 247 taxa, of which 217 are Animalia, 25 Plantae and 5 Chromista, from 23 countries surrounding the Mediterranean and the Black Sea. Chordata was the most abundant taxonomic group, followed by Arthropoda, Mollusca, and Annelida. In terms of species records, Siganus luridus, Siganus rivulatus, Saurida lessepsianus, Pterois miles, Upeneus moluccensis, Charybdis (Archias) longicollis, and Caulerpa cylindracea were the most numerous. The temporal distribution of the records ranges from 1973 to 2022, with 44% of the records in 2020–2021. Lethrinus borbonicus is reported for the first time in the Mediterranean Sea, while Pomatoschistus quagga, Caulerpa cylindracea, Grateloupia turuturu, and Misophria pallida are first records for the Black Sea; Kapraunia schneideri is recorded for the second time in the Mediterranean and for the first time in Israel; Prionospio depauperata and Pseudonereis anomala are reported for the first time from the Sea of Marmara. Many first country records are also included, namely: Amathia verticillata (Montenegro), Ampithoe valida (Italy), Antithamnion amphigeneum (Greece), Clavelina oblonga (Tunisia and Slovenia), Dendostrea cf. folium (Syria), Epinephelus fasciatus (Tunisia), Ganonema farinosum (Montenegro), Macrorhynchia philippina (Tunisia), Marenzelleria neglecta (Romania), Paratapes textilis (Tunisia), and Botrylloides diegensis (Tunisia)

    Early selection for oil quality components in olive breeding progenies

    No full text
    Olive oil is highly valued for its nutritional quality mainly determined by its fatty acid composition together with the presence of several biologically active minor components. In olive breeding programs, these oil quality components are normally evaluated in the later stages of selection because oil extraction is not suitable for being performed in large seedling progenies with initial low yield. In the present work, we evaluate the ability of open pollinated progenies of 17 olive cultivars located in a large germplasm bank as a means of generate genetic variability for oil quality components directly measured in fruit. High degree of variability was found for most of the oil quality components analyzed, including some cases of transgressive segregation. Narrow-sense heritability greatly varies among traits, being particularly high for sterol content. Lack of correlation among fruit traits previously reported and oil quality traits suggest the possibility of simultaneous breeding for most of them. In summary, open pollination of cultivars from a germplasm bank together with early evaluation directly in fruit seems to be a convenient strategy for breeding for oil quality traits on olive.This work has been partly supported by research project P11-AGR-7301 from the Andalusian Regional Government Council of Innovation and Science.Peer reviewe

    Characterization of the Volatile, Phenolic and Antioxidant Properties of Monovarietal Olive Oil Obtained from cv. Halhali

    No full text
    Volatile and phenolic compositions of olive oil obtained from the cv. Halhali were investigated in the present study. Fruits were harvested at the optimum maturity stage of ripeness and immediately processed with cold press. Simultaneous distillation/extraction (SDE) with dichloromethane was applied to the analysis of volatile compounds of olive oil. Sensory analysis showed that the aromatic extract obtained by SDE was representative of olive oil odour. In the olive oil, 40 and 44 volatile components were identified and quantified in 2010 and 2012 year, respectively. The total amount of volatile compounds was 18,007 and 19,178 ”g kg-1 for 2010 and 2012, respectively. Of these, 11 compounds in the 2010 and 12 in the 2012 harvest presented odour activity values (OAVs) greater than 1, with 1-octen-3-ol, ethyl-3-methyl butanoate, (E)-2-heptenal and (E,Z)-2,4-decadienal being those with the highest OAVs in olive oil. The high-performance liquid chromatographic method coupled with diode-array detection was used to identify and quantify phenolic compounds of the olive oil. A total of 14 phenolic compounds in both years were identified and quantified in olive oil. The major phenolic compounds that were identified in both years were hydroxytyrosol, tyrosol, elenolic acid, luteolin, and apigenin. Antioxidant activity of olive oil was measured using the DPPH and ABTS methods. © 2013 AOCS

    Effects of marine and freshwater macroalgae on in vitro total gas and methane production

    Get PDF
    This study aimed to evaluate the effects of twenty species of tropical macroalgae on in vitro fermentation parameters, total gas production (TGP) and methane (CH4) production when incubated in rumen fluid from cattle fed a low quality roughage diet. Primary biochemical parameters of macroalgae were characterized and included proximate, elemental, and fatty acid (FAME) analysis. Macroalgae and the control, decorticated cottonseed meal (DCS), were incubated in vitro for 72 h, where gas production was continuously monitored. Post-fermentation parameters, including CH4 production, pH, ammonia, apparent organic matter degradability (OMd), and volatile fatty acid (VFA) concentrations were measured. All species of macroalgae had lower TGP and CH4 production than DCS. Dictyota and Asparagopsis had the strongest effects, inhibiting TGP by 53.2% and 61.8%, and CH4 production by 92.2% and 98.9% after 72 h, respectively. Both species also resulted in the lowest total VFA concentration, and the highest molar concentration of propionate among all species analysed, indicating that anaerobic fermentation was affected. Overall, there were no strong relationships between TGP or CH4 production and the >70 biochemical parameters analysed. However, zinc concentrations >0.10 g.kg−1 may potentially interact with other biochemical components to influence TGP and CH4 production. The lack of relationship between the primary biochemistry of species and gas parameters suggests that significant decreases in TGP and CH4 production are associated with secondary metabolites produced by effective macroalgae. The most effective species, Asparagopsis, offers the most promising alternative for mitigation of enteric CH4 emissions
    corecore