3,759 research outputs found
Codimension Two Compactifications and the Cosmological Constant Problem
We consider solutions of six dimensional Einstein equations with two compact
dimensions. It is shown that one can introduce 3-branes in this background in
such a way that the effective four dimensional cosmological constant is
completely independent of the brane tensions. These tensions are completely
arbitrary, without requiring any fine tuning. We must, however, fine tune bulk
parameters in order to obtain a sufficiently small value for the observable
cosmological constant. We comment in the effective four dimensional description
of this effect at energies below the compactification scale.Comment: 4 pages, rextex
The Self-Calibrating Hubble Diagram
As an increasing number of well measured type Ia supernovae (SNe Ia) become
available, the statistical uncertainty on w has been reduced to the same size
as the systematic uncertainty. The statistical error will decrease further in
the near future, and hence the improvement of systematic uncertainties needs to
be addressed, if further progress is to be made. We study how uncertainties in
the primary reference spectrum - which are a main contribution to the
systematic uncertainty budget - affect the measurement of the Dark Energy
equation of state parameter w from SNe Ia. The increasing number of SN
observations can be used to reduce the uncertainties by including perturbations
of the reference spectrum as nuisance parameters in a cosmology fit, thus
"self-calibrating" the Hubble diagram.
We employ this method to real SNe data for the first time and find the
perturbations of the reference spectrum consistent with zero at the 1%-level.
For future surveys we estimate that ~3500 SNe will be required for our method
to outperform the standard method of deriving the cosmological parameters.Comment: 17 pages, 8 figures, 1 table. Update to revised version accepted for
publication in JCA
Validity of self-reported causes of subfertility
The authors assessed the accuracy of cause(s) of subfertility as reported by women in a self-administered questionnaire in comparison with medical record information, in a nationwide cohort study of women receiving in vitro fertilization treatment in the Netherlands (n = 9,164) between 1983 and 1995. Validity was expressed as sensitivity and specificity, and reliability was expressed by the kappa statistic and overall agreement between self-reports and medical records for various subfertility categories. The sensitivity for subfertility attributed to tubal, male, hormonal, cervical, uterine, and idiopathic factors and for endometriosis was 84%, 78%, 65%, 40%, 46%, 59%, and 83%, respectively. The corresponding kappas were 0.79, 0.71, 0.38, 0.34, 0.13, 0.50, and 0.52, respectively. For 54% of all women who reported two or more causes of subfertility, the medical record revealed only one major factor. Conversely, for 43% of all women whose subfertility was attributed to two or more major factors in the record, only one factor was reported by the women. Older age at the time of filling out the questionnaire, low educational level, long duration of subfertility, and pre-in vitro fertilization treatment were associated with less accurate reporting. The results indicate that the validity of self-reports for tubal and male subfertility is satisfactory. For unexplained subfertility, the validity is moderate; for other causes of subfertility and when two causes of subfertility play a role, the validity is low. Copyrigh
A minimal set of invariants as a systematic approach to higher order gravity models: Physical and Cosmological Constraints
We compare higher order gravity models to observational constraints from
magnitude-redshift supernova data, distance to the last scattering surface of
the CMB, and Baryon Acoustic Oscillations. We follow a recently proposed
systematic approach to higher order gravity models based on minimal sets of
curvature invariants, and select models that pass some physical acceptability
conditions (free of ghost instabilities, real and positive propagation speeds,
and free of separatrices). Models that satisfy these physical and observational
constraints are found in this analysis and do provide fits to the data that are
very close to those of the LCDM concordance model. However, we find that the
limitation of the models considered here comes from the presence of
superluminal mode propagations for the constrained parameter space of the
models.Comment: 12 pages, 6 figure
From cosmic deceleration to acceleration: new constraints from SN Ia and BAO/CMB
We use type Ia supernovae (SN Ia) data in combination with recent baryonic
acoustic oscillations (BAO) and cosmic microwave background (CMB) observations
to constrain a kink-like parametrization of the deceleration parameter ().
This -parametrization can be written in terms of the initial () and
present () values of the deceleration parameter, the redshift of the
cosmic transition from deceleration to acceleration () and the redshift
width of such transition (). By assuming a flat space geometry,
and adopting a likelihood approach to deal with the SN Ia data we obtain, at
the 68% confidence level (C.L.), that: ,
and when we combine
BAO/CMB observations with SN Ia data processed with the MLCS2k2 light-curve
fitter. When in this combination we use the SALT2 fitter we get instead, at the
same C.L.: , and
. Our results indicate, with a quite general and
model independent approach, that MLCS2k2 favors Dvali-Gabadadze-Porrati-like
cosmological models, while SALT2 favors CDM-like ones. Progress in
determining the transition redshift and/or the present value of the
deceleration parameter depends crucially on solving the issue of the difference
obtained when using these two light-curve fitters.Comment: 25 pages, 9 figure
Strategies, methods and tools for managing nanorisks in construction
This paper presents a general overview of the work carried out by European project SCAFFOLD (GA 280535) during its 30 months of life, with special emphasis on risk management component. The research conducted by SCAFFOLD is focused on the European construction sector and considers 5 types of nanomaterials (TiO2, SiO2, carbon nanofibres, cellulose nanofibers and nanoclays), 6 construction applications (Depollutant mortars, selfcompacting concretes, coatings, self-cleaning coatings, fire resistant panels and insulation materials) and 26 exposure scenarios, including lab, pilot and industrial scales. The document focuses on the structure, content and operation modes of the Risk Management Toolkit developed by the project to facilitate the implementation of "nano-management" in construction companies. The tool deploys and integrated approach OHSAS 18001 - ISO 31000 and is currently being validated on 5 industrial case studies.Research carried out by project SCAFFOLD was made possible thanks to funding from the European
Commission, through the Seventh Framework Programme (GA 280535
Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate
Hen egg-white lysozyme (HEWL) was the first enzyme to have its three-dimensional structure determined by X-ray diffraction techniques(1). A catalytic mechanism, featuring a long-lived oxo-carbenium-ion intermediate, was proposed on the basis of model-building studies(2). The `Phillips' mechanism is widely held as the paradigm for the catalytic mechanism of beta -glycosidases that cleave glycosidic linkages with net retention of configuration of the anomeric centre. Studies with other retaining beta -glycosidases, however, provide strong evidence pointing to a common mechanism for these enzymes that involves a covalent glycosyl-enzyme intermediate, as previously postulated(3). Here we show, in three different cases using electrospray ionization mass spectrometry, a catalytically competent covalent glycosyl-enzyme intermediate during the catalytic cycle of HEWL. We also show the three-dimensional structure of this intermediate as determined by Xray diffraction. We formulate a general catalytic mechanism for all retaining beta -glycosidases that includes substrate distortion, formation of a covalent intermediate, and the electrophilic migration of C1 along the reaction coordinate
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition
Inositol phosphates (InsPs) are signaling molecules with multiple roles in cells. In particular Graphic (InsP6) is involved in mRNA export and editing or chromatin remodeling among other events. InsP6 accumulates as mixed salts (phytate) in storage tissues of plants and plays a key role in their physiology. Human diets that are exclusively grain-based provide an excess of InsP6 that, through chelation of metal ions, may have a detrimental effect on human health. Ins(1,3,4,5,6)P5 2-kinase (InsP5 2-kinase or Ipk1) catalyses the synthesis of InsP6 from InsP5 and ATP, and is the only enzyme that transfers a phosphate group to the axial 2-OH of the myo-inositide. We present the first structure for an InsP5 2-kinase in complex with both substrates and products. This enzyme presents a singular structural region for inositide binding that encompasses almost half of the protein. The key residues in substrate binding are identified, with Asp368 being responsible for recognition of the axial 2-OH. This study sheds light on the unique molecular mechanism for the synthesis of the precursor of inositol pyrophosphates
The GEMAS Project: Geochemistry of European agricultural and grazing land soils.
Viene illustrato il progetto GEMAS che ha interessato la campionatura e le analisi di suoli dell'ntero continente Europeo da parte dei Servizi Geologici d'Europa, nell'ìambito delle attività dell'EuroGeoSurvey
- …
