12 research outputs found
Resonant Kushi-comb-like multi-frequency radiation of oscillating two-color soliton molecules
Nonlinear waveguides with two distinct domains of anomalous dispersion can support the formation of molecule-like two-color pulse compounds. They consist of two tightly bound subpulses with frequency loci separated by a vast frequency gap. Perturbing such a two-color pulse compound triggers periodic amplitude and width variations, reminiscent of molecular vibrations. With increasing strength of perturbation, the dynamics of the pulse compound changes from harmonic to nonlinear oscillations. The periodic amplitude variations enable coupling of the pulse compound to dispersive waves, resulting in the resonant emission of multi-frequency radiation. We demonstrate that the location of the resonances can be precisely predicted by phase-matching conditions. If the pulse compound consists of a pair of identical subpulses, inherent symmetries lead to degeneracies in the resonance spectrum. Weak perturbations lift existing degeneracies and cause a splitting of the resonance lines into multiple lines. Strong perturbations result in more complex emission spectra, characterized by well separated spectral bands caused by resonant Cherenkov radiation and additional four-wave mixing processes
ΠΡΡΠΈΠ½ΠΎΠ²ΡΠΉ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌ ΠΏΡΠΈ ΠΎΡΡΡΠΎΠΉ ΡΠ΅ΡΠ΅Π±ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΠΈ
Objective: to study the specific features of purine metabolism in clinically significant acute cerebral ischemia. Subjects and materials. Three hundred and fifty patients with the acutest cerebral ischemic stroke were examined. The parameters of gas and electrolyte composition, acid-base balance, the levels of malonic dialdehyde, adenine, guanine, hypox-anthine, xanthine, and uric acid, and the activity of xanthine oxidase were determined in arterial and venous bloods and spinal fluid. Results. In ischemic stroke, hyperuricemia reflects the severity of cerebral metabolic disturbances, hemodynamic instability, hypercoagulation susceptiility, and the extent of neurological deficit. In ischemic stroke, hyperuri-corachia is accompanied by the higher spinal fluid levels of adenine, guanine, hypoxanthine, and xanthine and it is an indirect indicator of respiratory disorders of central genesis, systemic acidosis, hypercoagulation susceptibility, free radical oxidation activation, the intensity of a stressor response to cerebral ischemia, cerebral metabolic disturbances, the depth of reduced consciousness, and the severity of neurological deficit. Conclusion. The high venous blood activity of xanthine oxidase in ischemic stroke is associated with the better neurological parameters in all follow-up periods, the better early functional outcome, and lower mortality rates. Key words: hyperuricemia, stroke, xanthine oxidase, uric acid, cerebral ischemia.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ . ΠΠ·ΡΡΠΈΡΡ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΡΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ° ΠΏΡΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠΉ ΠΎΡΡΡΠΎΠΉ ΡΠ΅ΡΠ΅Π±ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΠΈ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ 350 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π² ΠΎΡΡΡΠ΅ΠΉΡΠ΅ΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π±ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΠ½ΡΡΠ»ΡΡΠ°. Π Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ, Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ ΠΈ Π»ΠΈΠΊΠ²ΠΎΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ, ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΈ ΠΊΠΈΡΠ»ΠΎΡΠ½ΠΎ-ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π΄ΠΈΠ°Π»ΡΠ΄Π΅Π³ΠΈΠ΄Π°, Π°Π΄Π΅Π½ΠΈΠ½Π°, Π³ΡΠ°Π½ΠΈΠ½Π°, Π³ΠΈΠΏΠΎΠΊΡΠ°Π½ΡΠΈΠ½Π°, ΠΊΡΠ°Π½ΡΠΈΠ½Π° ΠΈ ΠΌΠΎΡΠ΅Π²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ, Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΡΠ°Π½ΡΠΈΠ½ΠΎΠΊΡΠΈΠ΄Π°Π·Ρ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΈΠΏΠ΅ΡΡΡΠΈΠΊΠ΅ΠΌΠΈΡ ΠΏΡΠΈ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠ΅ ΠΎΡΡΠ°ΠΆΠ°Π΅Ρ ΡΡΠΆΠ΅ΡΡΡ ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ² ΡΠ΅ΡΠ΅Π±ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°, Π½Π΅ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π³Π΅ΠΌΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ, ΡΠΊΠ»ΠΎΠ½Π½ΠΎΡΡΠΈ ΠΊ Π³ΠΈΠΏΠ΅ΡΠΊΠΎΠ°Π³ΡΠ»ΡΡΠΈΠΈ, Π³Π»ΡΠ±ΠΈΠ½Ρ Π½Π΅Π²ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π΅ΡΠΈΡΠΈΡΠ°. ΠΠΈΠΏΠ΅ΡΡΡΠΈΠΊΠΎΡΠ°Ρ
ΠΈΡ ΠΏΡΠΈ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠ΅ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π² Π»ΠΈΠΊΠ²ΠΎΡΠ΅ Π°Π΄Π΅Π½ΠΈΠ½Π°, Π³ΡΠ°Π½ΠΈΠ½Π°, Π³ΠΈΠΏΠΎΠΊΡΠ°Π½ΡΠΈΠ½Π°, ΠΊΡΠ°Π½ΡΠΈΠ½Π°, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠΎΡΠ²Π΅Π½Π½ΡΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠΌ Π΄ΡΡ
Π°ΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ² ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π°, ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠ³ΠΎ Π°ΡΠΈΠ΄ΠΎΠ·Π°, ΡΠΊΠ»ΠΎΠ½Π½ΠΎΡΡΠΈ ΠΊ Π³ΠΈΠΏΠ΅ΡΠΊΠΎΠ°Π³ΡΠ»ΡΡΠΈΠΈ, Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΠΎΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΡ, Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΡΡΡΠ΅ΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΠΈΡΠ΅ΠΌΠΈΡ ΠΌΠΎΠ·Π³Π°, ΡΠ°ΡΡΡΡΠΎΠΉΡΡΠ² ΡΠ΅ΡΠ΅Π±ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°, Π³Π»ΡΠ±ΠΈΠ½Ρ ΡΠ³Π½Π΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠ·Π½Π°Π½ΠΈΡ ΠΈ ΡΡΠΆΠ΅ΡΡΠΈ Π½Π΅Π²ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π΅ΡΠΈΡΠΈΡΠ°. ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΡΡΠΎΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΡΠ°Π½ΡΠΈΠ½ΠΎΠΊΡΠΈΠ΄Π°Π·Ρ Π² Π²Π΅Π½ΠΎΠ·Π½ΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ ΠΏΡΠΈ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΈΠ½ΡΡΠ»ΡΡΠ΅ Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π° Ρ Π»ΡΡΡΠΈΠΌΠΈ Π½Π΅Π²ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ Π²ΠΎ Π²ΡΠ΅ ΡΡΠΎΠΊΠΈ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ, Π»ΡΡΡΠΈΠΌ ΡΠ°Π½Π½ΠΈΠΌ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌ ΠΈΡΡ
ΠΎΠ΄ΠΎΠΌ, ΠΌΠ΅Π½ΡΡΠ΅ΠΉ Π»Π΅ΡΠ°Π»ΡΠ½ΠΎΡΡΡΡ. ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ»ΠΎΠ²Π°: Π³ΠΈΠΏΠ΅ΡΡΡΠΈΠΊΠ΅ΠΌΠΈΡ, ΠΈΠ½ΡΡΠ»ΡΡ, ΠΊΡΠ°Π½ΡΠΈΠ½ΠΎΠΊΡΠΈΠ΄Π°Π·Π°, ΠΌΠΎΡΠ΅Π²Π°Ρ ΠΊΠΈΡΠ»ΠΎΡΠ°, ΡΠ΅ΡΠ΅Π±ΡΠ°Π»ΡΠ½Π°Ρ ΠΈΡΠ΅ΠΌΠΈΡ
Purine Metabolism in Acute Cerebral Ischemia
Objective: to study the specific features of purine metabolism in clinically significant acute cerebral ischemia. Subjects and materials. Three hundred and fifty patients with the acutest cerebral ischemic stroke were examined. The parameters of gas and electrolyte composition, acid-base balance, the levels of malonic dialdehyde, adenine, guanine, hypox-anthine, xanthine, and uric acid, and the activity of xanthine oxidase were determined in arterial and venous bloods and spinal fluid. Results. In ischemic stroke, hyperuricemia reflects the severity of cerebral metabolic disturbances, hemodynamic instability, hypercoagulation susceptiility, and the extent of neurological deficit. In ischemic stroke, hyperuri-corachia is accompanied by the higher spinal fluid levels of adenine, guanine, hypoxanthine, and xanthine and it is an indirect indicator of respiratory disorders of central genesis, systemic acidosis, hypercoagulation susceptibility, free radical oxidation activation, the intensity of a stressor response to cerebral ischemia, cerebral metabolic disturbances, the depth of reduced consciousness, and the severity of neurological deficit. Conclusion. The high venous blood activity of xanthine oxidase in ischemic stroke is associated with the better neurological parameters in all follow-up periods, the better early functional outcome, and lower mortality rates. Key words: hyperuricemia, stroke, xanthine oxidase, uric acid, cerebral ischemia
Resonant Kushi-comb-like multi-frequency radiation of oscillating two-color soliton molecules
Nonlinear waveguides with two distinct domains of anomalous dispersion can support the formation of molecule-like two-color pulse compounds. They consist of two tightly bound subpulses with frequency loci separated by a vast frequency gap. Perturbing such a two-color pulse compound triggers periodic amplitude and width variations, reminiscent of molecular vibrations. With increasing strength of perturbation, the dynamics of the pulse compound changes from harmonic to nonlinear oscillations. The periodic amplitude variations enable coupling of the pulse compound to dispersive waves, resulting in the resonant emission of multi-frequency radiation. We demonstrate that the location of the resonances can be precisely predicted by phase-matching conditions. If the pulse compound consists of a pair of identical subpulses, inherent symmetries lead to degeneracies in the resonance spectrum. Weak perturbations lift existing degeneracies and cause a splitting of the resonance lines into multiple lines. Strong perturbations result in more complex emission spectra, characterized by well separated spectral bands caused by resonant Cherenkov radiation and additional four-wave mixing processes
URIC ACID CONTENT, RENIN CONCENTRATION IN PATIENTS WITH PRE-ECLAMPSIA, DEPENDING ON THE LEVEL OF VITAMIN D AND CHARACTERISTICS OF EPIDURAL ANALGESIA IN LABOR
The objective: to investigate the correlation of renin concentration and uric acid content in pregnant women with pre-eclampsia and vitamin D deficiency and their impact on the course of pregnancy, childbirth, and infant status.Subjects and methods. The content of uric acid, vitamin D, endothelin and renin concentration were studied in pregnant women with pre-eclampsia and the control group; enzyme immunoassay and spectrophotometric tests were used. Venous blood was used as a specimen for tests.Results. Hyperuricemia (435.61 Β± 24.05 ΞΌmol/l) and a 10-fold increase of renin concentration were observed in patients with severe pre-eclampsia and vitamin D deficiency (11.23 Β± 1.60 ng/ml). Vitamin D deficiency is associated with a higher need for epidural administration of local anesthetics during labor analgesia in patients with pre-eclampsia versus the control group; it is also associated with unfavorable perinatal outcomes.Conclusions. The following was detected in the patients with pre-eclampsia: low levels of vitamin D, hyperuricemia, elevated blood renin concentration, which was associated with the severity of pain and increased blood pressure. For adequate analgesia and blood pressure control during labor, they needed a higher rate of local anesthetic administration. Perhaps, replenishing vitamin deficiencies during pregnancy may improve perinatal outcomes
Π‘ΠΠΠΠ ΠΠΠΠΠ ΠΠΠ§ΠΠΠΠ ΠΠΠ‘ΠΠΠ’Π«, ΠΠΠΠ¦ΠΠΠ’Π ΠΠ¦ΠΠ― Π ΠΠΠΠΠ Π£ ΠΠΠ¦ΠΠΠΠ’ΠΠ Π‘ ΠΠ ΠΠΠΠΠΠΠΠ‘ΠΠΠ Π ΠΠΠΠΠ‘ΠΠΠΠ‘Π’Π ΠΠ’ Π£Π ΠΠΠΠ― ΠΠΠ’ΠΠΠΠΠ D Π ΠΠ‘ΠΠΠΠΠΠΠ‘Π’Π ΠΠΠΠΠ£Π ΠΠΠ¬ΠΠΠ ΠΠΠΠΠ¬ΠΠΠΠΠ Π ΠΠΠΠ
The objective: to investigate the correlation of renin concentration and uric acid content in pregnant women with pre-eclampsia and vitamin D deficiency and their impact on the course of pregnancy, childbirth, and infant status.Subjects and methods. The content of uric acid, vitamin D, endothelin and renin concentration were studied in pregnant women with pre-eclampsia and the control group; enzyme immunoassay and spectrophotometric tests were used. Venous blood was used as a specimen for tests.Results. Hyperuricemia (435.61 Β± 24.05 ΞΌmol/l) and a 10-fold increase of renin concentration were observed in patients with severe pre-eclampsia and vitamin D deficiency (11.23 Β± 1.60 ng/ml). Vitamin D deficiency is associated with a higher need for epidural administration of local anesthetics during labor analgesia in patients with pre-eclampsia versus the control group; it is also associated with unfavorable perinatal outcomes.Conclusions. The following was detected in the patients with pre-eclampsia: low levels of vitamin D, hyperuricemia, elevated blood renin concentration, which was associated with the severity of pain and increased blood pressure. For adequate analgesia and blood pressure control during labor, they needed a higher rate of local anesthetic administration. Perhaps, replenishing vitamin deficiencies during pregnancy may improve perinatal outcomes.Β Π¦Π΅Π»Ρ: ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ²ΡΠ·ΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠ΅Π½ΠΈΠ½Π° ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΌΠΎΡΠ΅Π²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ Ρ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
Ρ ΠΏΡΠ΅ΡΠΊΠ»Π°ΠΌΠΏΡΠΈΠ΅ΠΉ Π½Π° ΡΠΎΠ½Π΅ Π΄Π΅ΡΠΈΡΠΈΡΠ° Π²ΠΈΡΠ°ΠΌΠΈΠ½Π°Β D ΠΈ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΠΈ, ΠΈΡΡ
ΠΎΠ΄ΠΎΠ² ΡΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π£ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
Ρ ΠΏΡΠ΅ΡΠΊΠ»Π°ΠΌΠΏΡΠΈΠ΅ΠΉ ΠΈ Π³ΡΡΠΏΠΏΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΈΠ·ΡΡΠ΅Π½Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠΎΡΠ΅Π²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ, Π²ΠΈΡΠ°ΠΌΠΈΠ½Π° D, ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ½Π° ΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΡΠ΅Π½ΠΈΠ½Π°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΈΠΌΠΌΡΠ½ΠΎΡΠ΅ΡΠΌΠ΅Π½ΡΠ½ΡΠ΅ ΠΈ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΎΡΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β Π²Π΅Π½ΠΎΠ·Π½Π°Ρ ΠΊΡΠΎΠ²Ρ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π£ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠΊ Ρ ΡΡΠΆΠ΅Π»ΠΎΠΉ ΠΏΡΠ΅ΡΠΊΠ»Π°ΠΌΠΏΡΠΈΠ΅ΠΉ Π½Π° ΡΠΎΠ½Π΅ Π΄Π΅ΡΠΈΡΠΈΡΠ° Π²ΠΈΡΠ°ΠΌΠΈΠ½Π° D (11,23 Β± 1,60 Π½Π³/ΠΌΠ») ΠΎΡΠΌΠ΅ΡΠ΅Π½Ρ Π³ΠΈΠΏΠ΅ΡΡΡΠΈΠΊΠ΅ΠΌΠΈΡ (435,61Β Β±Β 24,05 ΠΌΠΊΠΌΠΎΠ»Ρ/Π»), ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΡΠ΅Π½ΠΈΠ½Π° Π² ΠΊΡΠΎΠ²ΠΈ Π² 10 ΡΠ°Π·. ΠΠ΅ΡΠΈΡΠΈΡ Π²ΠΈΡΠ°ΠΌΠΈΠ½Π° D ΡΠ²ΡΠ·Π°Π½ Ρ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΏΠΎΡΡΠ΅Π±Π½ΠΎΡΡΡΡ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΏΠΈΠ΄ΡΡΠ°Π»ΡΠ½ΠΎ ΠΌΠ΅ΡΡΠ½ΡΡ
Π°Π½Π΅ΡΡΠ΅ΡΠΈΠΊΠΎΠ² ΠΏΡΠΈ Π°Π½Π°Π»ΡΠ³Π΅Π·ΠΈΠΈ ΡΠΎΠ΄ΠΎΠ² Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠΊ Ρ ΠΏΡΠ΅ΡΠΊΠ»Π°ΠΌΠΏΡΠΈΠ΅ΠΉ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΡΠΏΠΏΠΎΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΈ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠΌΠΈ ΠΏΠ΅ΡΠΈΠ½Π°ΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΈΡΡ
ΠΎΠ΄Π°ΠΌΠΈ.ΠΡΠ²ΠΎΠ΄Ρ. Π£ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠΊ Ρ ΠΏΡΠ΅ΡΠΊΠ»Π°ΠΌΠΏΡΠΈΠ΅ΠΉ Π²ΡΡΠ²Π»Π΅Π½Ρ: Π½ΠΈΠ·ΠΊΠΈΠΉ ΡΡΠΎΠ²Π΅Π½Ρ Π²ΠΈΡΠ°ΠΌΠΈΠ½Π° D, Π³ΠΈΠΏΠ΅ΡΡΡΠΈΠΊΠ΅ΠΌΠΈΡ, ΠΏΠΎΠ²ΡΡΠ΅Π½Π½Π°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΡΠ΅Π½ΠΈΠ½Π° Π² ΠΊΡΠΎΠ²ΠΈ, ΡΡΠΎ Π°ΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½ΠΎ Ρ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΡΡ Π±ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ° ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ΠΌ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ. ΠΠ»Ρ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΠΉ Π°Π½Π°Π»ΡΠ³Π΅Π·ΠΈΠΈ ΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π°ΡΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΡΠΎΠ΄Π°Ρ
ΠΈΠΌ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠ° Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠ°Ρ ΡΠΊΠΎΡΠΎΡΡΡ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΌΠ΅ΡΡΠ½ΡΡ
Π°Π½Π΅ΡΡΠ΅ΡΠΈΠΊΠΎΠ². ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π²ΠΎΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π΄Π΅ΡΠΈΡΠΈΡΠ° Π²ΠΈΡΠ°ΠΌΠΈΠ½Π° Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΠΈ ΡΠ»ΡΡΡΠΈΡ ΠΏΠ΅ΡΠΈΠ½Π°ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΈΡΡ
ΠΎΠ΄Ρ.