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Abstract
Nonlinear waveguides with two distinct domains of anomalous dispersion can support the
formation of molecule-like two-color pulse compounds. They consist of two tightly bound
subpulses with frequency loci separated by a vast frequency gap. Perturbing such a two-color pulse
compound triggers periodic amplitude and width variations, reminiscent of molecular vibrations.
With increasing strength of perturbation, the dynamics of the pulse compound changes from
harmonic to nonlinear oscillations. The periodic amplitude variations enable coupling of the pulse
compound to dispersive waves, resulting in the resonant emission of multi-frequency radiation. We
demonstrate that the location of the resonances can be precisely predicted by phase-matching
conditions. If the pulse compound consists of a pair of identical subpulses, inherent symmetries
lead to degeneracies in the resonance spectrum. Weak perturbations lift existing degeneracies and
cause a splitting of the resonance lines into multiple lines. Strong perturbations result in more
complex emission spectra, characterized by well separated spectral bands caused by resonant
Cherenkov radiation and additional four-wave mixing processes.

1. Introduction

Emission of radiation by physical objects is omnipresent in physical systems. For instance, in classical
electrodynamics, oscillating and linear accelerating point charges generate electric and magnetic fields.
Charged particles confined to circular orbits emit synchrotron radiation, decelerating charged particles
produce Bremsstrahlung, and oscillating electric dipoles cause dipole-radiation characteristic of radiative
transitions in atoms and molecules [1].

In the field of nonlinear optics many processes can be described by wave equations of the type of the
nonlinear Schrödinger equation (NSE) [2, 3], which, in the integrable case, supports localized field pulses
given by solitary waves [4]. Such localized field pulses resemble particles, and can, under the right
circumstances, sustain periodic variations of their amplitude and width. The emission of resonance radiation
caused by such oscillations has been studied in different nonlinear-optics settings. For example,
considering a NSE in which a varying dispersion coefficient perturbs transmitted pulses periodically,
dispersion-managed solitons were found to radiate through a resonance mechanism. The underlying
parametric resonance and the radiative decay of dispersion-managed solitons were studied for rapidly
varying dispersion maps [5], and for weakly varying dispersion maps [6]. In dispersion oscillating fibers,
such parametric resonances were investigated numerically and also experimentally for solitons (in case of
anomalous dispersion) and shock fronts (in case of normal dispersion) [7], demonstrating the generation
of resonant radiation (RR) at multiple resonant frequencies. In a standard NSE with added third-order
dispersion, higher-order solitons were shown to support a quite similar radiation mechanism [8]. Therein,
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the periodic variation of the solitons peak intensity enabled the coupling of the localized state to continuum
modes on the opposing side of the zero-dispersion point. As a result, RR in form of multi-frequency
comb-like spectral bands is emitted. The generation of such RR was shown to also proceed in presence of the
Raman-effect and pulse self-steepening [8]. In the case of the Lugiato–Lefever equation with third-order
dispersion, i.e. a variant of the NSE with added damping and driving, a Hopf-bifurcation can result in
oscillating dissipative solitons that shed RR in a series of well resolved spectral peaks [9].

In analogy to quantum mechanics, where molecules are formed as bound-states of multiple atoms,
nonlinear optics supports various types of molecule-like bound states of multiple field pulses. For instance,
usual soliton molecules which consist of two identical subpulses separated by a fixed time-delay, can be
realized in a dispersion managed NSE [10, 11]. Mutually bound solitons also arise in models of coupled
NSEs [12–19]. Specifically, for twin-core fibers with higher order dispersion, bound solitons near the
zero-dispersion point were studied and shown to sustain periodic center-of mass and amplitude variations
with different oscillation periods, giving rise to RR with different frequencies [20]. Further, dissipative
optical soliton molecules can be generated in mode-locked fiber lasers [21, 22]. Quite recently, a different
kind of molecule-like pulse compound has been demonstrated theoretically [23, 24]. It consists of two
subpulses at distinctly different center frequencies, which superimpose to form a single complex in the
time-domain. An attractive, cross-phase modulation induced potential holds these two-color pulses
compounds together [23]. The binding mechanism that enables their stable propagation is different from
that of usual soliton molecules. It requires a propagation constant with (at least) two separate domains of
anomalous dispersion within which group-velocity matched co-propagation of pulses is possible. A strong
incoherent attractive interaction between the subpulses of such a two-color soliton, mediated across (at least)
two zero-dispersion points, is ensured if the group-velocity mismatch between the pulses is negligible [25].
The emphasis on group-velocity matching is similar as for the repulsion between a soliton and a dispersive
wave mediated across a single zero-dispersion point [26–30], where quasi group-velocity matching is vital to
ensure a strong and efficient interaction mechanism. In terms of a NSE with added negative fourth-order
dispersion, two-color soliton molecules were identified as members of a large family of generalized
dispersion Kerr solitons [24]. Such two-color solitons were recently verified experimentally in mode-locked
laser cavities [31, 32]. Two-color soliton microcomb states of similar structure also exist in the framework of
the Lugiato–Lefever equation [33, 34]. The strong mutual interaction of the subpulses of such molecule-like
bound states [35] renders them ideal for studying the effects of oscillations exhibited by coupled localized
states in nonlinear optics systems.

Here, we discuss the rich dynamical behavior of such two-color soliton molecules, consisting of
group-velocity matched pulses located in distinct domains of anomalous dispersion, separated by a vast
frequency gap. We show that nonstationary dynamics of the subpulses results in emission of RR. The location
of the newly generated multi-peaked spectral bands can be understood by extending existing approaches
[7, 9, 20, 36, 37] to two-frequency pulse compounds [38]. Due to the manifold of two-frequency pulse
compounds with differing substructure, their emission spectra manifest in various complex forms. Viewing a
two-color soliton molecule as a superposition of two distinct subpulses immediately suggests the existence of
two different types of dynamics: first, oscillations of the subpulses with respect to a common center in time,
and second, pure amplitude oscillations of the subpulses. In previous studies of two-color soliton molecules
[23, 25, 35], a combination of both types of oscillations has generally been found. Therein, the first type of
oscillation was observed to be heavily damped [25, 35, 38]. In the presented work we focus on pure
amplitude oscillations, as they represent the persistent oscillation mode of two-frequency soliton molecules.

The article is organized as follows. In section 2 we detail the propagation model used for our theoretical
investigations and we specify initial conditions that directly generate special soliton-like two-color soliton
pairs [39], which we below also refer to as two-color solitonmolecules (or soliton molecules). This approach
surpasses previous ‘seeding’ procedures, which result in a largely uncontrolled generation of localized
two-color pulse compounds. In section 3 we will perturb such a two-color soliton molecule by systematically
increasing its initial amplitude. In analogy to usual single-pulse nonlinear Schröinger solitons, where
increasing the amplitude results in an oscillating pulse, this triggers amplitude oscillations of the entire pulse
compound, yielding a vibrating soliton molecule. We numerically demonstrate that the mutual driving of the
subpulses results in the generation of resonant multi-frequency radiation and we compare the observed
location of the resonances to analytic predictions obtained from a phase-matching analysis. We demonstrate
that symmetries, inherent in the propagation setting, can lead to degenerate resonance conditions, and we
show how existing degeneracies can be lifted by a perturbation of the propagation constant. Section 4
concludes with a summary.
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2. Methods

2.1. Propagationmodel
For studying the propagation dynamics of oscillating two-color pulse compounds, we consider the modified
NSE

i∂zA=

(
β2
2
∂2
t −

β4
24

∂4
t

)
A− γ|A|2A, (1)

for a complex-valued field A≡ A(z, t), on a periodic time-domain of extent T with boundary conditions
A(z,−T/2) = A(z,T/2). In equation (1), β2 > 0 (in units of fs2µm−1) is a positive-valued group-velocity
dispersion coefficient, β4 < 0 (fs4µm−1) is a negative-valued fourth-order dispersion coefficient, and
γ (W−1µm−1) is the nonlinear coefficient. For the discrete set of angular frequency detunings Ω ∈ 2π

T Z, the
expressions

AΩ(z) = F[A(z, t)]≡ 1

T

ˆ T/2

−T/2
A(z, t)eiΩt dt, (2)

A(z, t) = F−1[AΩ(z)]≡
∑
Ω

AΩ(z)e
−iΩt, (3)

specify forward (equation (2)), and inverse (equation (3)) Fourier transforms that relate the field envelope
A(z, t) to the spectral envelope AΩ(z). Using Parseval’s identity for these transforms, the total energy in both
domains is given by

E(z) =

ˆ T/2

−T/2
|A(z, t)|2 dt= T

∑
Ω

|AΩ(z)|2, (4)

wherein |A(z, t)|2 (W= J/s) specifies the instantaneous power, and |AΩ(z)|2 (W) the power spectrum.

2.2. Propagation constant
Using the identity ∂n

t e
−iΩt = (−iΩ)n e−iΩt, the frequency-domain representation of the propagation

constant is given by the polynomial expression β(Ω) = β2

2 Ω
2 + β4

24Ω
4. The inverse group-velocity of a

mode at detuning Ω is given by 1/vg(Ω) = β1(Ω)≡ ∂Ωβ(Ω), and the group-velocity dispersion is
β2(Ω)≡ ∂2

Ωβ(Ω). Assuming β2 > 0, and β4 < 0, the group-velocity dispersion exhibits a downward
parabolic shape with zero-dispersion points defined by β2(Ω) = 0 at ΩZ1,Z2 =∓

√
2β2/|β4|. Subsequently

we set β2 = 1fs2µm−1, and β4 =−1fs4µm−1, resulting in the dispersion characteristics shown in
figures 1(a)–(c). We further set γ = 1W−1µm−1. Let us note that the phenomena reported below are not
limited to the particular choice of the above parameters.

2.3. Propagation algorithm
The numerical simulations reported in section 3 are performed using an algorithm with adaptive stepsize
control, implementing the ‘Conservation quantity error’ method (CQE) [40, 41], which employs a
conservation law of the underlying propagation equation to guide selection of the propagation stepsize h.
Specifically, we use the relative error

δE(z) =
|E(z+ h)− E(z)|

E(z)
, (5)

where E is the energy (4), conserved by the NSE (1). The CQE method keeps δE within the goal error range
[0.1δG, δG], specified by the local goal error δG, by decreasing h when necessary while increasing h when
possible. For our numerical experiments we use δG = 10−10. To advance the field from position z to z+ h, we
use the fourth-order ‘Runge-Kutta in the interaction picture’ method [42].

2.4. Spectrograms
To assess the time-frequency interrelations within the field A at a selected propagation distance z, we use the
spectrogram [43, 44]

PS(t,Ω) =
1

2π

∣∣∣∣∣
ˆ T/2

−T/2
A(z, t ′)h(t ′ − t)e−iΩt ′ dt ′

∣∣∣∣∣
2

. (6)

Therein, h(x) = exp(−x2/2σ2) specifies a Gaussian window function with root-mean-square width σ,
used to localize the field in time.
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2.5. Initial conditions
Given the modified NSE (1), two-color pulse compounds can be ‘seeded’ by using initial conditions
consisting of two superimposed fundamental solitons in the form

A0(t) = a1 sech(t/t1)e
−iΩ1t + a2 sech(t/t2)e

−iΩ2t, (7)

where a2n = |β2(Ωn)|/(γ t2n), with n ∈ (1,2), are the peak intensities of the two subpulses which are subject to
the group-velocity matching condition β1(Ω1) = β1(Ω2). Upon propagation, such an initial condition will
evolve into a narrow localized pulse which can exhibit internal dynamics, reminiscent of molecular
vibrations, and is accompanied by free radiation [23]. Recently we demonstrated that if the spectral extent of
each subpulse is small compared to the frequency gap separating them, the mutual interaction of both pulses
is effectively incoherent, allowing to construct special solutions in the form of two-color soliton pairs [39].
Considering the propagation constant used in equation (1), an entirely symmetric two-color soliton pair can
be constructed by choosing both subpulse loci at the two group-velocity matched frequencies
Ω1,2 =∓

√
6β2/|β4|, highlighted in figures 1(a)–(c). They exhibit β1(Ω1) = β1(Ω2) = β1(0) = 0

(figure 1(b)), and β2(Ω1) = β2(Ω2) =−2β2 < 0 (figure 1(c)). Assuming two identical subpulse envelopes in
equation (7), realized by t1 = t2 ≡ t0 and a21 = a22 = 2β2/(3γt20) [39], then yields

A0(t) = F(0, t) cos
(√

2β2/|β4|t
)
, (8)

wherein

F(z, t) =
√
P0 sech(t/t0)e

iκz (9)

specifies a pulse-enclosing envelope with peak power P0 = 8β2/(3γt20) and nonlinear wavenumber κ= β2/t20
[39]. These two-color soliton pairs correspond to the fundamental metasoliton describing generalized
dispersion Kerr solitons, recently obtained in terms of a multi-scales analysis [24].

2.6. Fundamental two-color solitonmolecule
In figures 1(d)–(g), we demonstrate such a two-color soliton pair, having
Ω1,2 =∓

√
6radfs−1 ≈∓2.449radfs−1, and t0 = 6fs. Specifically, figure 1(f) shows the meta-envelope,

enclosing the initial field. The vast frequency gap between the subpulse loci is evident in figure 1(g). The
above condition for incoherent coupling, requiring the frequency separation of the pulses, given by
Ωsep ≡ |Ω2 −Ω1|=

√
24β2/|β4|, to be large compared to the spectral extent of the individual subpulses, i.e.

Ω0 = 2/(πt0), is clearly satisfied: the example in figure 1 has Ωsep/Ω0 ≈ 46. The soliton-like propagation of
this fundamental two-color soliton pair is demonstrated in figures 1(d) and (e).

3. Results

To investigate the radiation that emanates from an oscillating two-color soliton molecule, we need to realize
stable z-periodic dynamics. Specifically, in section 3.1 we demonstrate how to induce amplitude and width
oscillations of soliton molecules and we study their characteristics. In section 3.2 we demonstrate that
oscillating soliton molecules shed RR in the form of multi-peaked spectral bands, and we compare our
numerical results to predictions based on a phase matching analysis. In section 3.3 we show that possible
degeneracies in the resulting radiation can be lifted by perturbations.

3.1. Oscillating two-color solitonmolecules
3.1.1. Amplitude oscillations
So as to excite amplitude and width oscillations of two-color soliton molecules, we consider initial conditions
of the form of equations (8) and (9), and include an additional dimensionless factor N through
P0 → P ′

0 ≡ N2P0, allowing to increase their initial amplitude. The choice N = 1 yields the basic soliton
molecule of equation (8) (figure 1(f)), for which the pulse-enclosing envelope F is coined the fundamental
metasoliton in reference [24]. In analogy with the nomenclature of usual single-pulse nonlinear Schrödinger
solitons, choosing N > 1 define higher-order metasolitons [24], resulting in oscillating soliton molecules. For
brevity, we will refer to N simply as the order of the soliton molecule. Figure 2 demonstrates such oscillating
soliton molecules for N = 1.1 (figure 2(a)), N = 1.4 (figure 2(b)), and N = 1.65 (figure 2(c)). If the initial
perturbation of the two-color soliton molecule is small (N = 1.1), the variation of the scaled peak intensity is
largely harmonic (figure 2(d)), i.e. a single spatial Fourier mode describes the observed intensity variation
(figure 2(g)). As evident from figures 2(e), (h) and (g), (i), increasing the molecule order results in nonlinear
peak intensity oscillations, and, consequently, an increasing number of spatial Fourier modes. Thereby, the
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Figure 1. Idealized setup yielding a two-color soliton molecule. (a) Propagation constant, (b) inverse group velocity, and,
(c) group-velocity dispersion. Circle and diamond highlight the two-color solitons subpulse loci. The domain of normal
dispersion is shaded gray. In (c), A1 and A2 label distinct domains of anomalous dispersion, and N labels the domain of normal
dispersion. (d) Intensity, and, (e) spectrum of a fundamental two-color soliton molecule for the propagation range z= 0 . . .15z0
with z0 = t20/(2β2). (f) Initial intensity, and, (g) initial spectrum at z= 0. In (f), A labels the scaled intensity |A|2/P0, and B labels
the squared magnitude of the meta-envelope |F|2/P0 = sech2(t/t0).

Figure 2. Vibration characteristics of two-color soliton molecules. (a)–(c) Time-domain propagation dynamics for (a) N= 1.1,
(b) N= 1.4, and, (c) N= 1.65. The horizontal dashed lines indicate z= (π/2)z0, i.e. the oscillation period of a higher-order
standard NSE soliton with dispersion length z0. (d)–(f) Variation of the scaled peak intensity followed for 8 consecutive
oscillation periods for (d) N= 1.1 with Λ = 4.30z0, (e) N= 1.4 with Λ = 1.93z0, and, (f) N= 1.65 with Λ = 1.13z0.
(g)–(i) Spatial Fourier modes corresponding to the intensity variations shown in (d)–(f).

variation of the molecule peak intensity is characterized by an oscillation period Λ that decreases with
increasing order N.

3.1.2. Amplitude oscillation wavelength
To quantify these dynamic amplitude and width variations we performed a series of numerical simulations
for soliton molecules with different initial duration and order in the range [1.05,2], see figure 3. For N→ 1,
the observed oscillation period agrees well with that of standard nonlinear Schrödinger solitons of order N
governed by a standard NSE, indicated by the solid line (labeled C) in figure 3. This finding is reasonable,
since, for N ≈ 1, the coupling between the molecules subpulses remains effectively incoherent so that a given

5
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Figure 3. Change of the oscillation wavelength Λ with soliton molecule order N. Data points, labeled A and B, show numerical
results for soliton molecules with initial duration t0 = 6 fs and t0 = 12 fs, respectively. The oscillation period is scaled by
z0 = t20/(2β2). Solid line, labeled C, shows numerical results for standard NSE solitons of order N. Dashed line, labeled D, shows
results obtained by assuming a harmonic oscillation of the molecules subpulse widths. Dash-dotted line, labeled E, shows the
approximate oscillation period obtained from a variational approach. Short dashed line, labeled F, shows a fit of equation (12) to
the data for molecules with t0 = 6 fs.

subpulse can be described by a standard NSE with modified coefficients [39]. For N→ 2, the oscillation
period of standard NSE solitons approaches the value zsol = (π/2)z0, i.e. the soliton period of a higher-order
(single) soliton with dispersion length z0, indicated by the horizontal line in figure 3. We find that the
oscillation period of soliton molecules with large duration t0 = 12fs, labeled B in figure 3, are in excellent
agreement with this behavior. This finding is consistent with results obtained for a N = 2 metasoliton of
duration t0 =

√
2|β4|/(3β2ϵ2)≈ 16.3fs (ε= 0.05), studied in reference [24]. In contrast, soliton molecules

with smaller duration t0 = 6fs, labeled A in figure 3, deviate from this behavior for N⪆ 1.6. From our
numerical experiments we found that for soliton molecules with small duration, even small amplitude
oscillations suffice to cause a molecule to adiabatically change its shape, affecting its oscillation period and
explaining the observed trend of the data. Overall, the close correspondence between the oscillatory behavior
of soliton molecules and standard NSE solitons allows to directly transfer approximate descriptions of the
evolution of near-fundamental standard NSE solitons, obtained in terms of variational approaches [45, 46],
to the present case. A simple qualitative model of the observed subpulse oscillations can be derived on
basis of a coupled system of variational equations, governing the evolution of the parameters of a
hyperbolic-secant trial pulse [46]. From this, an equation of motion can be obtained that captures the
variation of the pulse width about some preferred, stationary value (see appendix A). In lowest order
approximation, it describes a harmonic oscillation. The corresponding wavelength

ΛHO(N) =
π2

√
2N2

z0, (10)

derived in appendix A, is in qualitative agreement with our numerical results, see the dashed line (labeled D)
in figure 3. A less intuitive, but more accurate estimate of the oscillation period can be obtained by using
Gaussian trial functions to approximate NSE solitons in a variational analysis of the standard NSE, yielding
the approximate oscillation period [45]

Λvar(N) =
π
√
2N2

(
√
2N2 − 1)3/2

z0, (11)

which is in good agreement with our numerical results, as shown by the dash-dotted line (labeled E) in
figure 3. A fit of the molecule data to a polynomial model of the form

Λfit(N) = z0

3∑
n=0

cnN
−n, (12)

yields the parameters (c0, c1, c2, c3) = (−15.1,64.3,−93.2,56.2) for soliton molecules with initial duration
t0 = 6fs, shown as short dashed line (labeled F) in figure 3. For molecules with t0 = 12fs, a fit yields
(c0, c1, c2, c3) = (−3.8,24.7,−47,39).

3.2. Degenerated multi-frequency radiation
Below we show that the nonstationary dynamics of soliton molecules, which is reminiscent of molecular
vibrations, results in emission of resonant multi-frequency radiation.

6
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Figure 4. Resonant radiation of symmetric two-color soliton molecules. (a)–(d) Results for soliton molecules of order
N= 1.65. (a) Evolution of the intensity on a logarithmic scale. The inset shows a close-up view of the normalized field
|A(z, t)|2/max(|A(z, t)|2) in the range t=−20 . . .20 fs and z/z0 = 2 . . .10 on a linear color-scale. (b) Evolution of the spectrum.
Horizontal short dashed line indicates z/z0 = 28.6. (c) Dispersion profile and graphical solution of the resonance conditions
equations (14) and (15) for z-oscillation periods of orderm. (d) Spectrum at z/z0 ≈ 28.6. Vertical lines in (c), (d) indicate loci of
resonant frequencies. (e)–(h) Same for N= 2.0. In (e), the t-range of the inset is t=−10 . . .10 fs. In (h) z/z0 ≈ 29.73. Vertical
dashed lines in (d), (h) indicate approximate loci of the resonances form=−1, given by equation (19).

3.2.1. Example for N= 1.65
As a first example, we consider a soliton molecule with duration t0 = 6fs, and order N = 1.65. Figure 4(a)
shows the time-domain intensity on a logarithmic scale (cf figure 2(c)), indicating that, in response to the
initial perturbation, the localized molecule sheds radiation along either t-direction. The periodic variation of
the spectrum, accompanying the amplitude and width oscillations of the molecule with wavelength
Λ/z0 = 2.23, is shown in figure 4(b). Let us note that the oscillation of the molecule is clearly visible in the
close-up view in figure 4(a). Distinct, comb-like bands of frequencies can be seen to develop in the vicinity of
the subpulse loci Ω1 and Ω2. These newly generated spectral bands appear particularly pronounced when the
molecule assumes its maximum time-domain width during an oscillation period, so that the resonances are
not drowned by the spectrum of the molecule, demonstrated for the specific choice z/z0 ≈ 28.6 in
figures 4(b) and (d). The spectral location of this RR can be predicted in terms of wave number matching
conditions, derived for the dynamically evolving, oscillating molecule state. For clarity, below we summarize
the derivation of the resonance conditions detailed in reference [38]. Considering an oscillating soliton
molecule, consisting of two subpulses U1 and U2, we can account for amplitude and width oscillations by
representing both in terms of a Fourier series [38]

Un(z, t) =
∑
m

Cnm(t) exp

(
iκnz+ im

2π

Λ
z

)
, n ∈ (1,2), m ∈ Z (13)

wherein Cnm are expansions coefficients, κn are the wavenumbers that govern the z-propagation of the
subpulses, and Λ is the wavelength of the periodic z-variation of the molecule. Below, we abbreviate the
wavenumbers associated with the harmonics of the molecules z-oscillation wavelength Λ by Km = 2πm/Λ.
Under the assumption that these subpulses satisfy a pair of coupled NSEs [25, 39], and by assessing how

7
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dispersive radiation is excited by their mutual periodic driving [38], the resonance conditions

Dn(ΩRR)−κn = Km, n ∈ (1,2), m ∈ Z (14)

Dn(ΩRR)− 2κn +κn ′ = Km, n,n ′ ∈ (1,2), n ̸= n ′, m ∈ Z (15)

can be obtained. Therein, Dn(Ω)≡ β(Ω)−β(Ωn)−β1(Ω)(Ω−Ωn), for n= 1,2, defines the dispersion
profile in the reference frame of each of the subpulses, and ΩRR specifies frequencies at which RR is excited.
The individual subpulse wavenumbers are related to the subpulse amplitudes a1 and a2 through

κ1 =
γ

2
(a21 + 2a22), (16)

κ2 =
γ

2
(a22 + 2a21)+β(Ω2)−β(Ω1). (17)

Equation (14) yields resonance conditions for the generation of Cherenkov radiation emitted by each of
the molecules subpulses, related to themth harmonic of the driving period Λ. Equation (15) defines further
resonance conditions indicative of four-wave mixing (FWM) processes that involve both subpulses.

In reference [38], the subpulse wavenumbers κ1 and κ2 had to be extracted a posteriori from the
simulated propagation dynamics. In the present case, we can establish a reasonable a priori estimate by
assuming the molecule to be close to a two-color soliton pair with subpulse amplitudes
a1 = a2 =

√
2β2/(3γt20) [39] and β(Ω1) = β(Ω2) = 3β2

2/(2|β4|), giving

κ1 = κ2 =
β2
t20
. (18)

Consequently, the resonance conditions (14) and (15) are degenerate. The wavenumber profile in the
reference frame of the subpulse at Ω1, given by D1(Ω)−κ1, is shown in figure 4(c). In the reference frame
of the subpulse at Ω2, the wavenumber profile D2(Ω)−κ2 looks identical. This is a consequence of
the symmetry of the propagation constant about the point Ω= 0, and the symmetric choice
−Ω1 =Ω2 =

√
6radfs−1 of the subpulse loci. A graphical solution of the resonance conditions (14) and (15)

can be obtained by superimposing the wavenumber profile with the wavenumbers Km, associated with the
harmonics of the molecules z-oscillation wavelength. This is demonstrated in figure 4(c), where Km for
m=−8 . . .1 are included as horizontal dashed lines. The crossing points, emphasized by dots in figure 4(c),
indicate frequency loci ΩRR at which the coupling of energy into dispersive waves is expected to be efficient.
As shown by the vertical lines in figures 4(c) and (d), we find that these resonant frequencies are in excellent
agreement with our numerical results. The large number of resonant frequencies, excited and continuously
fed during propagation of the molecule, is related to the large number of modes required by a Fourier
decomposition of the nonlinear vibration of the molecule for N = 1.65 (cf figures 2(f) and (i)). Molecules of
order N = 1.4 yield fewer and less pronounced resonances. As shown by the spectrogram figure 6(a), all
resonantly excited modes leave the molecule at a characteristic group-velocity, characteristic for their
location in the vicinity of Ω1 and Ω2: all resonantly excited modes in [0,Ω1] and [Ω2,∞] propagate towards
larger positive times; those in [0,Ω2] and [Ω1,∞] propagate towards increasingly negative times. We can
simplify the above resonance condition to obtain a simple expression that specifies the location of the first
few resonances reasonably well: by making a parabolic approximation of the propagation constant in the
vicinity of Ω1 and Ω2, and by neglecting the contribution of the subpulse wavenumbers κ1 and κ2, we find

Ω
(1,2),±
RR,m ≈ Ω1,2 ±

√
|Km|
β2

. (19)

The approximate positions of the resonances form=−1 are indicated by vertical dashed lines in
figure 4(d).

3.2.2. Example for N= 2
According to equation (19) it should be possible to control the separation between consecutive resonances by
either decreasing β2, resulting in a more ‘flat’ dispersion profile D1(Ω) in figure 4(c), or by increasing the
wavenumbers Km, resulting in more widely spaced horizontal dashed lines in figure 4(c). To verifyy
this prediction we next consider a soliton molecule of order N = 2. Since such a molecule exhibits
Λ(N= 2)< Λ(N= 1.65) (figure 3), we expect to observe resonant frequencies with larger spacing as in the
previously considered case. As evident from figures 4(e) and (f), the evolution of the molecule proceeds in
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two distinct stages: during the initial propagation stage z/z0 ⪅ 10, a large amount of dispersive radiation
emanates from the molecule; then, for z/z0 ⪆ 10, the molecule seems to have reached a steadily oscillating
stage. The initial burst of energy results in an adiabatic reshaping of the molecule in course of which its
temporal width decreases to about t0 ≈ 4fs, and its spectrum broadens. Consequently, the molecule also
develops a notable spectral density within the domain of normal dispersion (figure 4(f)). The wavelength of
the z-periodic oscillations also decrease slightly from initially Λ/z0 ≈ 1.1 to Λ/z0 ≈ 0.92 for z/z0 ⪆ 10. This
causes the wavenumbers Km, indicated by horizontal dashed lines in figure 4(g), to shift downwards, and the
corresponding resonant frequencies to shift away from the nearest subpulse location. The associated spectral
lines then appear broadened (figure 4(h)). A similar observation has been made in a study of the resonance
mechanism of higher-order solitons in a NSE with added third order dispersion [8]: adding the
Raman-effect, which causes a self-frequency-shift of solitons, was found to wash out the resonantly excited
radiation bands. The approximate positions of the resonances form=−1 are again indicated by vertical
dashed lines in figure 4(h). Contrasting the dynamics for N = 2 with that for N = 1.65 provides an
unexpected observation: since the possible driving wavenumbers Km are now more widely spaced, see the
horizontal dashed lines in figure 4(g), the molecule can support only fewer resonant frequencies; as a result,
its amplitude and width oscillations appear more harmonic. As evident from the spectrogram figure 6(b),
due to the aforementioned decrease of Λ for increasing z, some resonances, which are present during the
initial ‘nonlinearly oscillating’ propagation stage (z/z0 ⪅ 10), die out and are absent in the later
‘harmonically oscillating’ propagation stage (z/z0 ⪆ 10). Let us note that for both cases considered above, the
particular resonance form= 0, indicating the excitation of the usual Cherenkov radiation in absence of
amplitude and width oscillations [47], is not excited.

In both cases studied above, we find that the amplitude and width oscillations of the soliton molecules
are quasistationary and decay only slowly due to the emission of RR. Further, let us note that taking longer
pulses will result in more narrow spectra in the vicinity of the center frequencies of both subpulses. This will
result in a larger dispersion length and soliton period, see equations (10) and (12). As a consequence, the
wavenumber associated with the z-periodic variation of a soliton molecule will decrease. According to
equations (14) and (15), this will result in more narrowly spaced resonances in the spectrum.

3.3. Lifting the degeneracies by perturbations
In order to lift the degeneracy of the resonance conditions (14) and (15), which occurs for κ1 = κ2,
equations (16) and (17) suggest two possibilities: either setting a1 ̸= a2 (see appendix B), i.e. assigning
different amplitudes for both subpulses, or devising a propagation scenario for which β(Ω1) ̸= β(Ω2).
Subsequently, we opt for the latter and assess the impact of a non-symmetric propagation constant
on the dynamics of a soliton molecule. Specifically, we modify the propagation constant to
β(Ω) = β2

2 Ω
2 + β3

6 Ω
3 + β4

24Ω
4 using β3 =−0.2fs3µm−1. This breaks the symmetry inherent in the

propagation scenarios studied above. In figure 5 we show how a soliton molecule with N = 1.65, and
subpulse center frequencies again at−Ω1 =Ω2 =

√
6radfs−1, responds to such a perturbation. In this case,

the effective values of second order dispersion felt by both subpulses are β2(Ω1)≈−1.51fs2µm−1, and
β2(Ω2)≈−2.49fs2µm−1. We then start with a (fundamental) two-color soliton pair in the form of
equation (7) with a1 =

√
(2α− 1)|β2(Ω1)|/(3γt20) and a2 =

√
(2α−1 − 1)|β2(Ω2)|/(3γt20), with

α= β2(Ω2)/β2(Ω1)≈ 1.65 [39], and increase its amplitude by the factor N. As a first observation, we note
that the molecule acquires an additional shift in its group-velocity due to β3 ̸= 0. In figure 5(a) we
compensated for the resulting drift by transforming to a reference frame with velocity v0 =−1.877µmfs−1,
within which the molecule appears stationary. Further, the spectrum in figures 5(b) and (d) is now very
different from that in figures 4(b) and (d). The soliton molecule exhibits a non-symmetric spectrum,
consisting of a strong pulse, centered at Ω1, and a weaker pulse, centered at Ω2. In such a scenario, due to a
strong entanglement of the subpulses [35], we expect that the strong pulse drives the weak pulse so that the
wavelength of the intensity and width oscillations are equal for both pulses. From our numerical simulation
we find Λ/z0 = 3.2. Below we perform a phase-matching analysis in the frame of reference of the stronger
subpulse (i.e. the one at Ω1). In this case, we have to resort to measuring the subpulse wavenumbers κ1 and
κ2 a posteriori from the simulated dynamics. A graphical solution of the resonance conditions (14) for
m=−5 . . .5 shows that now there are also multi-peaked spectral bands of resonances excited aroundm= 0,
indicated by the red short-dashed line in figure 5(c). A filtered view of the RR at Ω≈ 0.6radfs−1, enclosed by
a box (labeled A) in figure 5(b), is shown in the box (labeled A) in figure 5(a). As evident from this filtered
view, the RR is emitted in a pulse-wise fashion and with decreasing intensity for increasing propagation
distance [48]. The phase-relationship between theses separated pulses then yields the multi-peaked spectral
band in figure 5(d). Additional bands of resonances, associated with Cherenkov resonances, are visible at
Ω≈ Ω1 and Ω≈ 3.5radfs−1. For clarity, we provide a graphical solution of the phase-matching
conditions (14) form=−5 . . .5, only. Similar effects for perturbation by β3 have previously been reported
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Figure 5. Resonant radiation of a two-color soliton molecule of order N= 1.65 for a non-symmetric propagation constant,
perturbed by β3 =−0.2 fs3µm−1. (a) Evolution of the intensity on a linear scale. (b) Evolution of the spectrum. A filtered view
of the spectral components enclosed by the box (labeled (A) in (b)) is shown within the box (labeled (A) in (a)). (c) Dispersion
profile as seen for the subpulse atΩ1, and graphical solution of the resonance conditions (14) and (15) for z-oscillation periods of
orderm=−5 . . .5. (d) Spectrum at z/z0 ≈ 28.5. Vertical lines in (c), (d) indicate loci of resonant frequencies. B and E label the
loci of FWM resonances (equation (15)) expected in absence of oscillations. Similarly, C and D label those of Cherenkov
resonances (equation (14)) in absence of oscillations.

Figure 6. Spectrograms of vibrating soliton molecules and their resonantly shed radiation. (a) Spectrogram of the oscillating
molecule for N= 1.65 at z/z0 ≈ 28.6 (figures 4(a)–(d)), showing many narrowly spaced resonances. The spectrogram is
computed for σ = 24 fs in equation (6). (b) Spectrogram (σ = 24 fs) of a molecule for N= 2 at z0/z= 29.73 (figures 4(e)–(h)),
showing few widely spaced resonances. (c) Spectrogram (σ = 16 fs) for a molecules with N= 1.65 and a non-symmetric
propagation constant (figure 5). The horizontal short-dashed lines indicate zero-dispersion points. The dashed line indicates
β1(Ω)z, i.e. the light-cone delimiting temporal position of a mode atΩ emitted at z= 0. Movies of the dynamics are provided as
supplementary material.

for higher-order solitons in the NSE [8], and dissipative solitons in fiber cavities [9]. Additional FWM
resonances arising from equation (15) can be identified at Ω≈−3.8radfs−1. In contrast to an earlier
approach, where such resonances were caused by the nonlinear mixing of solitons and dispersive waves [37],
we here find that these resonances are caused by a mixing of the subpulses of a soliton molecule.

All of the resonantly generated radiation emanates from the molecule in the vicinity of the Cherenkov,
and FWM resonances specified by equations (14) and (15). The pulse-wise emission is clearly evident in the
spectrogram figure 6(c). In figure 6(c) we did not compensate for the non-vanishing group velocity of the
molecule, so that, at z/z0 ≈ 28, it has drifted to t≈−300fs. In the non-oscillating case, the observed
multi-frequency spectral bands would degenerate into single, sharp spectral lines [36, 37, 47]. Specifically,
the points in the spectrum labeled C and D in figure 4(d) correspond to the location of Cherenkov radiation,
and the points labeled B and E correspond to additional FWM processes in absence of oscillations. Finally, let
us note that in the present propagation scenario we do not observed RR in the vicinity of the point labeled E
in figure 5(d). As discussed in references [37, 38], this can be attributed to a low efficiency of the
corresponding resonant process. In comparison to the earlier two cases studied in section 3.2, we here find
that the amount of RR emanating from the soliton molecule is larger and that the amplitude oscillations
decay faster. Let us note that lifting the degeneracies between the resonance conditions (14) and (15) through
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weak perturbations first leads to a split-up of the resonance lines into multiple lines (see appendix B). Only
when increasing the strength of the perturbation, complex spectra as in figure 5 are obtained.

As pointed out above, a viable means to lift existing degeneracies is to consider pulses at a group velocity
matched pair of frequencies for which β(Ω1) ̸= β(Ω2). Above, this was achieved by considering a
non-symmetric propagation constant. Similarly, this can be achieved by retaining a symmetric propagation
constant but shifting the subpulses to a group-velocity matched pair of frequencies different from the specific
pair Ω1,2 considered above. In addition, allowing a frequency dependence of the nonlinear coefficient γ in
the nonlinear part of equation (1) directly breaks the symmetry of the subpulses that comprise a molecule.
Propagation models of this type were considered in previous studies in references [23, 25, 35, 38].

4. Summary and conclusions

We studied two-color soliton molecules, i.e. pulse compounds consisting of two tightly bound subpulses at
vastly distinct frequencies, supported by nonlinear waveguides with two distinct domains of anomalous
dispersion.

First, we analyzed the amplitude and width oscillations of such molecules, induced by increasing the
molecule order in a systematic way. The order of a molecule is defined similar to the usual order of solitons
in the standard NSE. We contrasted the periodic dynamics exhibited by two-color soliton molecules with
that of single solitons in the standard NSE, finding that, in the limit of large molecule duration and despite
their complex internal structure, their z-oscillation wavelength matches that of a standard NSE soliton of the
same order. By elaborating on a well established variational analysis of the NSE we were led to expect that
near-fundamental soliton molecules oscillate harmonically, whereas the amplitude oscillations quickly grow
nonlinear with increasing molecule order. This simple and intuitive picture was found to be in good
qualitative agreement with our numerical results. Recently it was demonstrated that the oscillation period of
breathing solitons in a mode-locked fiber laser, i.e. a dissipative system, depends on the pump power with
their relationship following that of a devil’s staircase [49]. This relationship is clearly different from that
discussed in section 3.1 for our conservative system, which could lead to expect a very different dynamics of
two-color soliton molecules in dissipative and conservative systems.

Second, we investigated the emission spectrum of soliton molecules, excited by their periodic amplitude
and width oscillations. As soon as a molecule oscillates, it sheds RR in the form of multi-frequency spectral
bands, reminiscent of the shape of traditional Japanese Kushi combs. The frequency spacing of resonantly
excited modes is determined by the z-oscillation wavelength of the molecule. We demonstrated that the
location of the resonant frequencies can be reliably predicted by means of resonance conditions resulting
from a phase-matching analysis. Specifically, there are two types of resonance conditions which separately
determine the generation of Cherenkov radiation and further FWM processes. We showed that if the
propagation scenario is entirely symmetric, these resonance conditions are redundant, so that the generated
radiation is degenerate. Breaking the symmetry of the propagation scenario, which we here accomplished by
perturbing the propagation constant, the degeneracy can be lifted and distinct multi-frequency spectral
bands uniquely associated with Cherenkov radiation, and further FWM processes, are obtained.

The occurrence of such multi-frequency radiation, especially in the degenerate form, constitutes a
fundamental phenomenon in nonlinear waveguides. The presented study clarifies the mechanism underlying
the generation of RR of two-color soliton pulses, observed previously in terms of theoretical studies [23], and
recently also in experiments on multi-wavelength mode-locked solitons in laser cavities [32]. Our results
provide further insight into the puzzling propagation dynamics and radiative processes in presence of
two-frequency soliton molecules. Due to the manifold of two-frequency pulse compounds with differing
substructure, their emission spectra manifest in various complex forms. This demonstrates a peculiar
nonlinear optics system for investigating emission of RR.

Data availability statement

The data that support the findings of this study are available upon request from the authors.

Acknowledgment

OM, SW, IB, UM, and AD acknowledge financial support from Deutsche Forschungsgemeinschaft (DFG)
under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (Photonics, Optics, and
Engineering–Innovation Across Disciplines) (EXC 2122, Project No. 390833453). AY acknowledges financial
support from Priority 2030 Academic Leadership Program and Goszadanie No. 2019-1246. IB also

11



New J. Phys. 25 (2023) 013003 O Melchert et al

acknowledges support from DFG (Project No. BA4156/4-2). UM also acknowledges support from DFG
(Project No. MO 850-20/1).

Appendix A. Simplified description of solitonmolecule amplitude and width
oscillations

Considering the standard NSE in nondimensional form

i∂zA=−1

2
∂2
t A− |A|2A, (A.1)

a variational approach based on the trial function

A(z, t) = η sech
( t

w

)
exp

(
iθ+ ib

t2

2w

)
, (A.2)

yields the set of coupled ordinary differential equations

d

dz
(η2w) = 0, (A.3)

d

dz
w= b, (A.4)

d

dz
b=

4

π2w3
(1− η2w2), (A.5)

d

dz
θ =

5η2

6
− 1

3w3
, (A.6)

describing the z-variation of the amplitude (η), pulse width (w), pulse phase (θ), and, chirp (b) of the trial
function (A.2) [46]. Equation (A.3) implies the constant of motion η2w= const., linking intensity and width
variations of the trial function (A.2). For an approximate analysis of the pulse width variation along z, we
consider the z-derivative of equation (A.4), which, together with equation (A.5), defines the nonlinear
equation of motion

d2

dz2
w=

4

π2w3
(1− η2w2)≡ f(w). (A.7)

Assuming a pulse width w(z) = w0 + ϵ(z) that performs periodic oscillations with amplitude ϵ(z) about

some preferred value w0, we may expand equation (A.7) up to first order in ε to find d2

dz2 ϵ≈ f(w0)+ f ′(w0)ϵ
with f(w0) = αw−3

0 +βw−1
0 , and f ′(w0)≡ ∂

∂w f(w)|w=w0 =−3αw−4
0 −βw−2

0 , with α= 4π−2 and β =−αη2.
Imposing the condition f(w0) = 0 fixes w0 = η−1, i.e. a reasonable choice for w0 given the trial
function (A.2), and brings equation (A.7) to the form of a harmonic oscillator

d2

dz2
ϵ(z)+K2(η)ϵ(z)≈ 0, (A.8)

with angular wavenumber K(η) = 2
√
2η2/π. The wavelength of this harmonic oscillation then reads

ΛHO(η) =
2π

K(η)
=

π2

√
2η2

. (A.9)

We can readily transfer this result to the case of amplitude and width oscillations of two-color soliton
molecules. In the limit where the spectral extent of a molecules subpulses is small in comparison to the
frequency gap separating them, i.e. under the condition πt0

√
6β2/|β4| ≫ 1, each subpulse can effectively be

modeled in terms of a standard NSE [39]. Then we are led to expect that the oscillation period of each soliton
molecule subpulse, and thus the entire soliton molecule, is reasonably well described by the approximate
result equation (A.9). We plot ΛHO(η)/z0, with z0 = 1 for equation (A.1), as dashed line, labeled D, in
figure 3. Let us note that expanding equation (A.7) up to second order in ε yields a correction term

∝ [f ′ ′(w0)/2]ϵ2 with f ′ ′(w0)≡ ∂2

∂w2 f(w)|w=w0 = 40η5/π2, indicating that the anharmonicity of the oscillation
increases rapidly with increasing amplitude. This finding is in qualitative agreement with the numerical
results in section 3.1.
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Figure A1. Spectrogram (σ = 70 fs) of a vibrating soliton molecule with slightly different subpulse amplitudes. The main plot
shows the propagation dynamics starting from an initial condition given by equation (B.1) with N1 = 1.59 and N2 = 1.66. Parts
of the main plot enclosed by the box is detailed in the close-up view labeled A. Due to the unequal subpulse amplitudes, the
degeneracy among the resonance conditions (14) and (15) is lifted. For comparison, the close-up view labeled B shows the
corresponding plotting range for the degenerate case with N1 = N2 = 1.59.

Appendix B. Splitting of resonance lines in presence of small amplitude differences

To complement the strong symmetry breaking perturbations induced by a non-symmetric propagation
constant, discussed in section 3.3, we here demonstrate degeneracy-lifted multifrequency radiation resulting
from a small difference in the molecules subpulse amplitudes. Specifically, we consider the symmetric
propagation constant β(Ω) = β2

2 Ω
2 + β4

24Ω
4 for β2 = 1fs2µm−1 and β4 =−1fs4µm−1, and the initial

condition

A0(t) = a1 sech(t/t1)e
−iΩ1t + a2 sech(t/t2)e

−iΩ2t, (B.1)

where Ω1,2 =∓
√
6radfs−1, t0 = 6fs, and a21,2 = N2

1,22β2/(γ t
2
0), with N1 = 1.57 and N2 = 1.66.

Correspondingly, a2 ⪆ a1 in equations (16) and (17). A spectrogram of the resulting vibrating soliton
molecule at z/z0 ≈ 80 [z0 = t20/(2β2)] is shown in figure A1. As evident from the spectrogram range
[Ω =−2.3 . . .− 1.5radfs−1]× [t=−900 . . .− 300fs], highlighted in close-up view A, the degeneracy of the
resonance conditions (14) and (15) is lifted. The primary resonances, resulting from solutions to
equation (14), are now accompanied by pairs of secondary resonances, resulting from solutions to
equation (15) for n= 1,2, which appear on either side of a primary resonance. To facilitate comparison to
the degenerate scenario, close-up view B shows the corresponding numerical results for N1 = N2 = 1.59.
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