114 research outputs found
Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf"
[EN] Hydrogen generation by using quantum dot (QD) based heterostructures has emerged as a promising strategy to develop artificial photosynthesis devices. In the present study, we sensitize mesoporous TiO2 electrodes with in-situ-deposited PbS/CdS QDs, aiming at harvesting light in both the visible and the near-infrared for hydrogen generation. This heterostructure exhibits a remarkable photocurrent of 6 mA.cm(-2), leading to 60 mL.cm(-2).day(-1) hydrogen generation. Most importantly, confirmation of the contribution of infrared photons to H-2 generation was provided by the incident-photon-to-current-efficiency (IPCE), and the integrated current was in excellent agreement with that obtained through cyclic voltammetry. The main electronic processes (accumulation, transport, and recombination) were identified by impedance spectroscopy, which appears as a simple and reliable methodology to evaluate the limiting factors of these photoelectrodes. On the basis of this TiO2/PbS/CdS heterostructrure, a "quasi-artificial leaf' has been developed, which has proven to produce hydrogen under simulated solar illumination at (4.30 +/- 0.25) mL.cm(-2).day(-1).We acknowledge support by projects from Ministerio de Economia y Competitividad (MINECO) of Spain (Consolider HOPE CSD2007-00007, MAT2010-19827), Generalitat Valenciana (PROMETEO/2009/058 and Project ISIC/2012/008 "Institute of Nanotechnologies for Clean Energies"), and Fundacio Bancaixa (P1.1B2011-50). S.G. acknowledges support by MINECO of Spain under the Ramon y Cajal programme. The SCIC of the University Jaume I de Castello is also acknowledged for the gas analysis measurements. C.S. acknowledges the POSDRU/89/1.5/S/58852 Project "Postdoctoral programme for training scientific researchers", co-financed by the European Social Fund within the Sectorial Operational Program Human Resources Development 2007-2013. We want to acknowledge Prof. J. Bisquert for the fruitful discussions related to this manuscript.Trevisan, R.; Rodenas, P.; González-Pedro, V.; Sima, C.; Sánchez, RS.; Barea, EM.; Mora-Sero, I.... (2013). Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf". Journal of Physical Chemistry Letters. 4(1):141-146. https://doi.org/10.1021/jz301890mS1411464
The My Active and Healthy Aging (My-AHA) ICT platform to detect and prevent frailty in older adults: Randomized control trial design and protocol
[EN] Introduction
Frailty increases the risk of poor health outcomes, disability, hospitalization, and death in older adults and affects 7%¿12% of the aging population. Secondary impacts of frailty on psychological health and socialization are significant negative contributors to poor outcomes for frail older adults.
Method
The My Active and Healthy Aging (My-AHA) consortium has developed an information and communications technology¿based platform to support active and healthy aging through early detection of prefrailty and provision of individually tailored interventions, targeting multidomain risks for frailty across physical activity, cognitive activity, diet and nutrition, sleep, and psychosocial activities. Six hundred adults aged 60 years and older will be recruited to participate in a multinational, multisite 18-month randomized controlled trial to test the efficacy of the My-AHA platform to detect prefrailty and the efficacy of individually tailored interventions to prevent development of clinical frailty in this cohort. A total of 10 centers from Italy, Germany, Austria, Spain, United Kingdom, Belgium, Sweden, Japan, South Korea, and Australia will participate in the randomized controlled trial.
Results
Pilot testing (Alpha Wave) of the My-AHA platform and all ancillary systems has been completed with a small group of older adults in Europe with the full randomized controlled trial scheduled to commence in 2018.
Discussion
The My-AHA study will expand the understanding of antecedent risk factors for clinical frailty so as to deliver targeted interventions to adults with prefrailty. Through the use of an information and communications technology platform that can connect with multiple devices within the older adult's own home, the My-AHA platform is designed to measure an individual's risk factors for frailty across multiple domains and then deliver personalized domain-specific interventions to the individual. The My-AHA platform is technology-agnostic, enabling the integration of new devices and sensor platforms as they emerge.This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 689582 and the Australian National Health and Medical Research Council (NHRMC) European Union grant scheme (1115818). M.J.S. reports personal fees from Eli Lilly (Australia) Pty Ltd and grants from Novotech Pty Ltd, outside the submitted work. All other authors report nothing to disclose.Summers, MJ.; Rainero, I.; Vercelli, AE.; Aumayr, GA.; De Rosario Martínez, H.; Mönter, M.; Kawashima, R. (2018). The My Active and Healthy Aging (My-AHA) ICT platform to detect and prevent frailty in older adults: Randomized control trial design and protocol. Alzheimer's and Dementia: Translational Research and Clinical Interventions. 4:252-262. https://doi.org/10.1016/j.trci.2018.06.004S2522624Blair, S. N. (1995). Changes in Physical Fitness and All-Cause Mortality. JAMA, 273(14), 1093. doi:10.1001/jama.1995.03520380029031Fried, L. P., Ferrucci, L., Darer, J., Williamson, J. D., & Anderson, G. (2004). Untangling the Concepts of Disability, Frailty, and Comorbidity: Implications for Improved Targeting and Care. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 59(3), M255-M263. doi:10.1093/gerona/59.3.m255Gillick, M. (2001). Guest Editorial: Pinning Down Frailty. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), M134-M135. doi:10.1093/gerona/56.3.m134Hamerman, D. (1999). Toward an Understanding of Frailty. Annals of Internal Medicine, 130(11), 945. doi:10.7326/0003-4819-130-11-199906010-00022Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., … McBurnie, M. A. (2001). Frailty in Older Adults: Evidence for a Phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), M146-M157. doi:10.1093/gerona/56.3.m146Panza, F., Solfrizzi, V., Barulli, M. R., Santamato, A., Seripa, D., Pilotto, A., & Logroscino, G. (2015). Cognitive Frailty: A Systematic Review of Epidemiological and Neurobiological Evidence of an Age-Related Clinical Condition. Rejuvenation Research, 18(5), 389-412. doi:10.1089/rej.2014.1637Soong, J., Poots, A., Scott, S., Donald, K., Woodcock, T., Lovett, D., & Bell, D. (2015). Quantifying the prevalence of frailty in English hospitals. BMJ Open, 5(10), e008456. doi:10.1136/bmjopen-2015-008456Varadhan, R., Walston, J., Cappola, A. R., Carlson, M. C., Wand, G. S., & Fried, L. P. (2008). Higher Levels and Blunted Diurnal Variation of Cortisol in Frail Older Women. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(2), 190-195. doi:10.1093/gerona/63.2.190BROWN, I., RENWICK, R., & RAPHAEL, D. (1995). Frailty. International Journal of Rehabilitation Research, 18(2), 93-102. doi:10.1097/00004356-199506000-00001Buchner, D. M., & Wagner, E. H. (1992). Preventing Frail Health. Clinics in Geriatric Medicine, 8(1), 1-18. doi:10.1016/s0749-0690(18)30494-4Kojima, G., Iliffe, S., Jivraj, S., & Walters, K. (2016). Association between frailty and quality of life among community-dwelling older people: a systematic review and meta-analysis. Journal of Epidemiology and Community Health, 70(7), 716-721. doi:10.1136/jech-2015-206717Ory, M. G., Schechtman, K. B., Miller, J. P., Hadley, E. C., Fiatarone, M. A., … Province, M. A. (1993). Frailty and Injuries in Later Life: The FICSIT Trials. Journal of the American Geriatrics Society, 41(3), 283-296. doi:10.1111/j.1532-5415.1993.tb06707.xShamliyan, T., Talley, K. M. C., Ramakrishnan, R., & Kane, R. L. (2013). Association of frailty with survival: A systematic literature review. Ageing Research Reviews, 12(2), 719-736. doi:10.1016/j.arr.2012.03.001Woodhouse, K. W., & O’Mahony, M. S. (1997). Frailty and ageing. Age and Ageing, 26(4), 245-246. doi:10.1093/ageing/26.4.245CAMPBELL, A. J., & BUCHNER, D. M. (1997). Unstable disability and the fluctuations of frailty. Age and Ageing, 26(4), 315-318. doi:10.1093/ageing/26.4.315Drey, M., Pfeifer, K., Sieber, C. C., & Bauer, J. M. (2011). The Fried Frailty Criteria as Inclusion Criteria for a Randomized Controlled Trial: Personal Experience and Literature Review. Gerontology, 57(1), 11-18. doi:10.1159/000313433Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., … Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270-279. doi:10.1016/j.jalz.2011.03.008Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild Cognitive Impairment. Archives of Neurology, 56(3), 303. doi:10.1001/archneur.56.3.303Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.-O., … Petersen, R. C. (2004). Mild cognitive impairment - beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240-246. doi:10.1111/j.1365-2796.2004.01380.xDubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., … Andrieu, S. (2016). Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s & Dementia, 12(3), 292-323. doi:10.1016/j.jalz.2016.02.002Moher, D., Hopewell, S., Schulz, K. F., Montori, V., Gotzsche, P. C., Devereaux, P. J., … Altman, D. G. (2010). CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ, 340(mar23 1), c869-c869. doi:10.1136/bmj.c869Gray, L. C., Bernabei, R., Berg, K., Finne-Soveri, H., Fries, B. E., Hirdes, J. P., … Ariño-Blasco, S. (2008). Standardizing Assessment of Elderly People in Acute Care: The interRAI Acute Care Instrument. Journal of the American Geriatrics Society, 56(3), 536-541. doi:10.1111/j.1532-5415.2007.01590.xRadloff, L. S. (1977). The CES-D Scale. Applied Psychological Measurement, 1(3), 385-401. doi:10.1177/014662167700100306Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F., Blazer, D. G., … Wallace, R. B. (1994). A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. Journal of Gerontology, 49(2), M85-M94. doi:10.1093/geronj/49.2.m85Powell, L. E., & Myers, A. M. (1995). The Activities-specific Balance Confidence (ABC) Scale. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 50A(1), M28-M34. doi:10.1093/gerona/50a.1.m28Kendzierski, D., & DeCarlo, K. J. (1991). Physical Activity Enjoyment Scale: Two Validation Studies. Journal of Sport and Exercise Psychology, 13(1), 50-64. doi:10.1123/jsep.13.1.50Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Brandt, J. (1991). The hopkins verbal learning test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5(2), 125-142. doi:10.1080/13854049108403297Lubben, J. E. (1988). Assessing social networks among elderly populations. Family & Community Health, 11(3), 42-52. doi:10.1097/00003727-198811000-00008Russell, D., Peplau, L. A., & Cutrona, C. E. (1980). The revised UCLA Loneliness Scale: Concurrent and discriminant validity evidence. Journal of Personality and Social Psychology, 39(3), 472-480. doi:10.1037/0022-3514.39.3.472De Vries, O. J., Peeters, G. M. E. E., Lips, P., & Deeg, D. J. H. (2013). Does frailty predict increased risk of falls and fractures? A prospective population-based study. Osteoporosis International, 24(9), 2397-2403. doi:10.1007/s00198-013-2303-zTheou, O., Stathokostas, L., Roland, K. P., Jakobi, J. M., Patterson, C., Vandervoort, A. A., & Jones, G. R. (2011). The Effectiveness of Exercise Interventions for the Management of Frailty: A Systematic Review. Journal of Aging Research, 2011, 1-19. doi:10.4061/2011/569194Cadore, E. (2014). Strength and Endurance Training Prescription in Healthy and Frail Elderly. Aging and Disease, 5(3), 183. doi:10.14336/ad.2014.0500183Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A., & Izquierdo, M. (2013). Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Research, 16(2), 105-114. doi:10.1089/rej.2012.1397Gardner, M. M. (2001). Practical implementation of an exercise-based falls prevention programme. Age and Ageing, 30(1), 77-83. doi:10.1093/ageing/30.1.77Eng, J. J. (2010). Fitness and Mobility Exercise Program for Stroke. Topics in Geriatric Rehabilitation, 26(4), 310-323. doi:10.1097/tgr.0b013e3181fee736Wadlinger, H. A., & Isaacowitz, D. M. (2008). Looking happy: The experimental manipulation of a positive visual attention bias. Emotion, 8(1), 121-126. doi:10.1037/1528-3542.8.1.121MacLeod, C. (2012). Cognitive bias modification procedures in the management of mental disorders. Current Opinion in Psychiatry, 25(2), 114-120. doi:10.1097/yco.0b013e32834fda4aMensink, R. P., & Katan, M. B. (1989). Effect of a Diet Enriched with Monounsaturated or Polyunsaturated Fatty Acids on Levels of Low-Density and High-Density Lipoprotein Cholesterol in Healthy Women and Men. New England Journal of Medicine, 321(7), 436-441. doi:10.1056/nejm19890817321070
Brain Training Game Improves Executive Functions and Processing Speed in the Elderly: A Randomized Controlled Trial
The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly.Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention.Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet.UMIN Clinical Trial Registry 000002825
Recommended from our members
Polygenic risk score for bipolar disorder associates with divergent thinking and brain structures in the prefrontal cortex
It has been hypothesized that a higher genetic risk of bipolar disorder (BD) is associated with greater creativity. Given the clinical importance of bipolar disorder and the importance of creativity to human society and cultural development, it is essential to reveal their associations and the neural basis of the genetic risk of bipolar disorder to gain insight into its etiology. However, despite the previous demonstration of the associations of polygenic risk score (PRS) of BD and creative jobs, the associations of BD-PRS and creativity measured by the divergent thinking (CMDT) and regional gray matter volume (rGMV) as well as regional white matter volume (rWMV) have not been investigated. Using psychological analyses and whole-brain voxel-by-voxel analyses, we examined these potential associations in 1558 young, typically developing adult students. After adjusting for confounding variables and multiple comparisons, a greater BD-PRS was associated with a greater total CMDT fluency score, and a significant relationship was found in fluency subscores. A greater BD-PRS was also associated with lower total mood disturbance. Neuroimaging analyses revealed that the BD-PRS was associated with greater rGMV in the right inferior frontal gyrus, which is a consistently affected area in BD, as well as a greater rWMV in the left middle frontal gyrus, which has been suggested to play a central role in the increased creativity associated with the risk of BD with creativity. These findings suggest a relationship between the genetic risk of BD and CMDT and prefrontal cortical structures among young educated individuals
Resistance measurements of conducting C[60] monolayers formed on Au and Cu films
The resistances of conducting C[60]monolayers formed on Au and Cu films were found to be 0.9±0.2 and 2.4±0.4 kΩ, respectively, by in situresistance measurements. Although the amount of charge transferred to each C[60] molecule from the Cu film was greater than that from the Au film, the conducting C[60]monolayer formed on the Cu film had higher resistance than that formed on the Au film. This result is consistent with resistance data for alkali fullerides
- …