25 research outputs found

    Erratum to: Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species

    Get PDF
    Background: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. Results: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. Conclusions: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant

    Exploring the Biocatalytic Potential of a Self-Sufficient Cytochr ome P450 from Thermothelomyces thermophila

    Get PDF
    Among nature's arsenal of oxidative enzymes, cytochrome P450s (CYPs) catalyze the most challenging reactions, the hydroxylations of non‐activated C−H bonds. Human CYPs are studied in drug development due to their physiological role at the forefront of metabolic detoxification, but their challenging handling makes them unsuitable for application. CYPs have a great potential for biocatalysis, but often lack appropriate features such as high and soluble expression, self‐sufficient internal electron transport, high stability, and an engineerable substrate scope. We have probed these characteristics for a recently described CYP that originates from the thermophilic fungus Thermothelomyces thermophila (CYP505A30), a homolog of the well‐known P450‐BM3 from Bacillus megaterium. CYP505A30 is a natural monooxygenase‐reductase fusion, is well expressed, and moderately tolerant towards temperature and solvent exposure. Although overall comparable, we found the stability of the enzyme's domains to be inverse to P450‐BM3, with a more stable reductase compared to the heme domain. After analysis of a homology model, we created mutants of the enzyme based on literature data for P450‐BM3. We then probed the enzyme variants in bioconversions using a panel of active pharmaceutical ingredients, and activities were detected for a number of structurally diverse compounds. Ibuprofen was biooxidized in a preparative scale whole cell bioconversion to 1‐, 2‐ and 3‐hydroxyibuprofen
    corecore