745 research outputs found

    Nanotechnological approaches to enhance anticancer chemo-immunotherapy

    Get PDF

    Parameterising the third dredge-up in asymptotic giant branch stars

    Get PDF
    We present new evolutionary sequences for low and intermediate mass stars for three different metallicities, Z = 0.02,0.008 and 0.004. We evolve the models from the pre-main sequence to the thermally-pulsing asymptotic giant branch phase. We have two sequences of models for each mass, one which includes mass loss and one without mass loss. Typically 20 or more pulses have been followed for each model, allowing us to calculate the third dredge-up parameter for each case. Using the results from this large and homogeneous set of models, we present an approximate fit for the core mass at the first thermal pulse, as well as for the third dredge-up efficiency parameter, and the core mass at the first third dredge-up episode as a function of metallicity and total mass. We also examine the effect of a reduced envelope mass on the value of the third dredge-up efficiency parameter.Comment: 23 pages, 19 figures, accepted for publication in PASA (Publications of the Astronomical Society of Australia

    A near-infrared study of AGB and red giant stars in the Leo I dSph galaxy

    Full text link
    A near-infrared imaging study of the evolved stellar populations in the dwarf spheroidal galaxy Leo I is presented. Based on JHK observations obtained with the WFCAM wide-field array at the UKIRT telescope, we build a near-infrared photometric catalogue of red giant branch (RGB) and asymptotic giant branch (AGB) stars in Leo I over a 13.5 arcmin square area. The V-K colours of RGB stars, obtained by combining the new data with existing optical observations, allow us to derive a distribution of global metallicity [M/H] with average [M/H] = -1.51 (uncorrected) or [M/H] = -1.24 +/- 0.05 (int) +/- 0.15 (syst) after correction for the mean age of Leo I stars. This is consistent with the results from spectroscopy once stellar ages are taken into account. Using a near-infrared two-colour diagram, we discriminate between carbon- and oxygen-rich AGB stars and obtain a clean separation from Milky Way foreground stars. We reveal a concentration of C-type AGB stars relative to the red giant stars in the inner region of the galaxy, which implies a radial gradient in the intermediate-age (1-3 Gyr) stellar populations. The numbers and luminosities of the observed carbon- and oxygen-rich AGB stars are compared with those predicted by evolutionary models including the thermally-pulsing AGB phase, to provide new constraints to the models for low-metallicity stars. We find an excess in the predicted number of C stars fainter than the RGB tip, associated to a paucity of brighter ones. The number of O-rich AGB stars is roughly consistent with the models, yet their predicted luminosity function is extended to brighter luminosity. It appears likely that the adopted evolutionary models overestimate the C star lifetime and underestimate their K-band luminosity.Comment: MNRAS, accepte

    On ionisation effects and abundance ratios in damped Lyman-alpha systems

    Full text link
    The similarity between observed velocity structures of Al III and singly ionised species in damped Lyman-alpha systems (DLAs) suggests the presence of ionised gas in the regions where most metal absorption lines are formed. To explore the possible implications of ionisation effects we construct a simplified two-region model for DLAs consisting of an ionisation bounded region with an internal radiation field and a neutral region with a lower metal content. Within this framework we find that ionisation effects are important. If taken into account, the element abundance ratios in DLAs are quite consistent with those observed in Milky Way stars and in metal-poor H II regions in blue compact dwarf galaxies. In particular we cannot exclude the same primary N origin in both DLAs and metal-poor galaxies. From our models no dust depletion of heavy elements needs to be invoked; little depletion is however not excluded.Comment: to appear in "Evolution of Galaxies. I. Observational clues", Eds. J.M. Vilchez, G. Stasinska, Astrophysics and Space Science, in press. 5 pages, including 3 figure

    Updated stellar yields from Asymptotic Giant Branch models

    Full text link
    An updated grid of stellar yields for low to intermediate-mass thermally-pulsing Asymptotic Giant Branch (AGB) stars are presented. The models cover a range in metallicity Z = 0.02, 0.008, 0.004, and 0.0001, and masses between 1Msun to 6Msun. New intermediate-mass Z = 0.0001 AGB models are also presented, along with a finer mass grid than used in previous studies. The yields are computed using an updated reaction rate network that includes the latest NeNa and MgAl proton capture rates, with the main result that between ~6 to 30 times less Na is produced by intermediate-mass models with hot bottom burning. In low-mass AGB models we investigate the effect on the production of light elements of including some partial mixing of protons into the intershell region during the deepest extent of each third dredge-up episode. The protons are captured by the abundant 12C to form a 13C pocket. The 13C pocket increases the yields of 19F, 23Na, the neutron-rich Mg and Si isotopes, 60Fe, and 31P. The increase in 31P is by factors of ~4 to 20, depending on the metallicity. Any structural changes caused by the addition of the 13C pocket into the He-intershell are ignored. However, the models considered are of low mass and any such feedback is likely to be small. Further study is required to test the accuracy of the yields from the partial-mixing models. For each mass and metallicity, the yields are presented in a tabular form suitable for use in galactic chemical evolution studies or for comparison to the composition of planetary nebulae.Comment: Accepted for publication in MNRAS; 15 page

    Detecting Primordial Stars

    Full text link
    We discuss the expected properties of the first stellar generations in the Universe. We find that it is possible to discern truly primordial populations from the next generation of stars by measuring the metallicity of high-z star forming objects. The very low background of the future James Webb Space Telescope (JWST) will enable it to image and study first-light sources at very high redshifts, whereas its relatively small collecting area limits its capability in obtaining spectra of z~10-15 first-light sources to either the bright end of their luminosity function or to strongly lensed sources. With a suitable investment of observing time JWST will be able to detect individual Population III supernovae, thus identifying the very first stars that formed in the Universe.Comment: [8 pages, 5 figures] Invited Talk, to appear in IMF@50: The Stellar Initial Mass Function Fifty Years Later, eds E. Corbelli, F. Palla, and H. Zinnecker (Dordrecht: Kluwer

    The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud

    Get PDF
    Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC). Methods: The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models

    Another cluster of red supergiants close to RSGC1

    Get PDF
    Recent studies have revealed massive star clusters in a region of the Milky Way close to the tip of the Long Bar. These clusters are heavily obscured and are characterised by a population of red supergiants. We analyse a previously unreported concentration of bright red stars ~16' away from the cluster RSGC1. We utilised near IR photometry to identify candidate red supergiants and then K-band spectroscopy of a sample to characterise their properties. We find a compact clump of eight red supergiants and five other candidates at some distance, one of which is spectroscopically confirmed as a red supergiant. These objects must form an open cluster, which we name Alicante 8. Because of the high reddening and strong field contamination, the cluster sequence is not clearly seen in 2MASS or UKIDSS near-IR photometry. From the analysis of the red supergiants, we infer an extinction AKS=1.9A_{K_{{\rm S}}}=1.9 and an age close to 20 Myr. Though this cluster is smaller than the three known previously, its properties still suggest a mass in excess of 10 000 M_{\sun}. Its discovery corroborates the hypothesis that star formation in this region has happened on a wide scale between ~10 and ~20 Myr ago.Comment: Accepted for publication in Astronomy & Astrophysics. Figure 1 degraded and changed to B&W, Figure 2 degraded to meet size requirement

    Very Luminous Carbon Stars in the Outer Disk of the Triangulum Spiral Galaxy

    Full text link
    Stars with masses in the range from about 1.3 to 3.5 Mo pass through an evolutionary stage where they become carbon stars. In this stage, which lasts a few Myr, these stars are extremely luminous pulsating giants. They are so luminous in the near-infrared that just a few of them can double the integrated luminosity of intermediate-age (0.6 to 2 Gyr) Magellanic Cloud clusters at 2.2 microns. Astronomers routinely use such near-infrared observations to minimize the effects of dust extinction, but it is precisely in this band that carbon stars can contribute hugely. The actual contribution of carbon stars to the outer disk light of evolving spiral galaxies has not previously been morphologically investigated. Here we report new and very deep near-IR images of the Triangulum spiral galaxy M33=NGC 598, delineating spectacular arcs of carbon stars in its outer regions. It is these arcs which dominate the near-infrared m=2 Fourier spectra of M33. We present near-infrared photometry with the Hale 5-m reflector, and propose that the arcs are the signature of accretion of low metallicity gas in the outer disk of M33.Comment: 4 pages, 4 figures. Revised version submitted to A&A Letter
    corecore