749 research outputs found
Parameterising the third dredge-up in asymptotic giant branch stars
We present new evolutionary sequences for low and intermediate mass stars for
three different metallicities, Z = 0.02,0.008 and 0.004. We evolve the models
from the pre-main sequence to the thermally-pulsing asymptotic giant branch
phase. We have two sequences of models for each mass, one which includes mass
loss and one without mass loss. Typically 20 or more pulses have been followed
for each model, allowing us to calculate the third dredge-up parameter for each
case. Using the results from this large and homogeneous set of models, we
present an approximate fit for the core mass at the first thermal pulse, as
well as for the third dredge-up efficiency parameter, and the core mass at the
first third dredge-up episode as a function of metallicity and total mass. We
also examine the effect of a reduced envelope mass on the value of the third
dredge-up efficiency parameter.Comment: 23 pages, 19 figures, accepted for publication in PASA (Publications
of the Astronomical Society of Australia
Identification and characterization of MicroRNAs expressed in the mouse eye
PURPOSE. MicroRNAs ( miRNAs) are a class of small, endogenous RNAs that negatively regulate gene expression post-transcriptionally by binding to target sites in the 3' untranslated region (UTR) of messenger RNAs. Although they have been found to regulate developmental and physiological processes in several organs and tissues, their role in the eye transcriptome is completely unknown. This study was conducted to gain understanding of their eye-related function in mammals, by looking for miRNAs significantly expressed in the mouse eye by means of high-resolution expression analysis. METHODS. The spatiotemporal localization of miRNAs was analyzed in the murine embryonic and postnatal eye by RNA in situ hybridization ( ISH) using LNA-modified oligonucleotide probes. RESULTS. Seven miRNAs were expressed in the eye with diverse and partially overlapping patterns, which may reflect their role in controlling cell differentiation of the retina as well as of other ocular structures. Most eye-expressed miRNAs overlap with or are in the near vicinity of transcripts derived predominantly from eye cDNA libraries. We found that these transcripts share very similar cellular distribution with their corresponding miRNAs, suggesting that miRNAs may share common expression regulatory elements with their host genes. CONCLUSIONS. The data provide a detailed characterization of expression of eye-enriched miRNAs. Knowledge of the spatiotemporal distribution of miRNAs is an essential step toward the identification of their targets and eventually the elucidation of their biological role in eye development and function
A near-infrared study of AGB and red giant stars in the Leo I dSph galaxy
A near-infrared imaging study of the evolved stellar populations in the dwarf
spheroidal galaxy Leo I is presented. Based on JHK observations obtained with
the WFCAM wide-field array at the UKIRT telescope, we build a near-infrared
photometric catalogue of red giant branch (RGB) and asymptotic giant branch
(AGB) stars in Leo I over a 13.5 arcmin square area. The V-K colours of RGB
stars, obtained by combining the new data with existing optical observations,
allow us to derive a distribution of global metallicity [M/H] with average
[M/H] = -1.51 (uncorrected) or [M/H] = -1.24 +/- 0.05 (int) +/- 0.15 (syst)
after correction for the mean age of Leo I stars. This is consistent with the
results from spectroscopy once stellar ages are taken into account. Using a
near-infrared two-colour diagram, we discriminate between carbon- and
oxygen-rich AGB stars and obtain a clean separation from Milky Way foreground
stars. We reveal a concentration of C-type AGB stars relative to the red giant
stars in the inner region of the galaxy, which implies a radial gradient in the
intermediate-age (1-3 Gyr) stellar populations. The numbers and luminosities of
the observed carbon- and oxygen-rich AGB stars are compared with those
predicted by evolutionary models including the thermally-pulsing AGB phase, to
provide new constraints to the models for low-metallicity stars. We find an
excess in the predicted number of C stars fainter than the RGB tip, associated
to a paucity of brighter ones. The number of O-rich AGB stars is roughly
consistent with the models, yet their predicted luminosity function is extended
to brighter luminosity. It appears likely that the adopted evolutionary models
overestimate the C star lifetime and underestimate their K-band luminosity.Comment: MNRAS, accepte
On ionisation effects and abundance ratios in damped Lyman-alpha systems
The similarity between observed velocity structures of Al III and singly
ionised species in damped Lyman-alpha systems (DLAs) suggests the presence of
ionised gas in the regions where most metal absorption lines are formed.
To explore the possible implications of ionisation effects we construct a
simplified two-region model for DLAs consisting of an ionisation bounded region
with an internal radiation field and a neutral region with a lower metal
content. Within this framework we find that ionisation effects are important.
If taken into account, the element abundance ratios in DLAs are quite
consistent with those observed in Milky Way stars and in metal-poor H II
regions in blue compact dwarf galaxies. In particular we cannot exclude the
same primary N origin in both DLAs and metal-poor galaxies. From our models no
dust depletion of heavy elements needs to be invoked; little depletion is
however not excluded.Comment: to appear in "Evolution of Galaxies. I. Observational clues", Eds.
J.M. Vilchez, G. Stasinska, Astrophysics and Space Science, in press. 5
pages, including 3 figure
Updated stellar yields from Asymptotic Giant Branch models
An updated grid of stellar yields for low to intermediate-mass
thermally-pulsing Asymptotic Giant Branch (AGB) stars are presented. The models
cover a range in metallicity Z = 0.02, 0.008, 0.004, and 0.0001, and masses
between 1Msun to 6Msun. New intermediate-mass Z = 0.0001 AGB models are also
presented, along with a finer mass grid than used in previous studies. The
yields are computed using an updated reaction rate network that includes the
latest NeNa and MgAl proton capture rates, with the main result that between ~6
to 30 times less Na is produced by intermediate-mass models with hot bottom
burning. In low-mass AGB models we investigate the effect on the production of
light elements of including some partial mixing of protons into the intershell
region during the deepest extent of each third dredge-up episode. The protons
are captured by the abundant 12C to form a 13C pocket. The 13C pocket increases
the yields of 19F, 23Na, the neutron-rich Mg and Si isotopes, 60Fe, and 31P.
The increase in 31P is by factors of ~4 to 20, depending on the metallicity.
Any structural changes caused by the addition of the 13C pocket into the
He-intershell are ignored. However, the models considered are of low mass and
any such feedback is likely to be small. Further study is required to test the
accuracy of the yields from the partial-mixing models. For each mass and
metallicity, the yields are presented in a tabular form suitable for use in
galactic chemical evolution studies or for comparison to the composition of
planetary nebulae.Comment: Accepted for publication in MNRAS; 15 page
Detecting Primordial Stars
We discuss the expected properties of the first stellar generations in the
Universe. We find that it is possible to discern truly primordial populations
from the next generation of stars by measuring the metallicity of high-z star
forming objects. The very low background of the future James Webb Space
Telescope (JWST) will enable it to image and study first-light sources at very
high redshifts, whereas its relatively small collecting area limits its
capability in obtaining spectra of z~10-15 first-light sources to either the
bright end of their luminosity function or to strongly lensed sources. With a
suitable investment of observing time JWST will be able to detect individual
Population III supernovae, thus identifying the very first stars that formed in
the Universe.Comment: [8 pages, 5 figures] Invited Talk, to appear in IMF@50: The Stellar
Initial Mass Function Fifty Years Later, eds E. Corbelli, F. Palla, and H.
Zinnecker (Dordrecht: Kluwer
The ALMA detection of CO rotational line emission in AGB stars in the Large Magellanic Cloud
Context. Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium.
Aims: This study attempts to spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud (LMC).
Methods: The Atacama Large Millimeter Array was used to observe two OH/IR stars and four carbon stars in the LMC in the CO J = 2-1 line.
Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. The derived gas-to-dust ratios allow the predicted velocities to agree with the observed gas-to-dust ratios. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C stars with properties that are more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than those derived from dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC.
Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances (hence luminosities), it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear to be similar. This is in agreement with dynamical dust-driven wind models
A new method to identify subclasses among AGB stars using Gaia and 2MASS photometry
Aims: We explore the wealth of high quality photometric data provided by data
release 2 of the Gaia mission for long period variables (LPVs) in the Large
Magellanic Cloud. Our goal is to identify stars of various types and masses
along the Asymptotic Giant Branch.
Methods: For this endeavour, we developed a new multi-band approach combining
Wesenheit functions W_{RP,BP-RP} and W_{K_s,J-K_s} in the Gaia BP, RP and 2MASS
J, K_s spectral ranges, respectively, and use a new diagram
(W_{RP,BP-RP}-W_{K_s,J-K_s}) versus K_s to distinguish between different kinds
of stars in our sample of LPVs. We used stellar population synthesis models to
validate our approach.
Results:We demonstrate the ability of the new diagram to discriminate between
O-rich and C-rich objects, and to identify low-mass, intermediate-mass and
massive O-rich red giants, as well as extreme C-rich stars. Stellar evolution
and population synthesis models guide the interpretation of the results,
highlighting the diagnostic power of the new tool to discriminate between
stellar initial masses, chemical properties and evolutionary stages.Comment: accepted for publication in A&A Letters; 7 figures, 2 appendice
Very Luminous Carbon Stars in the Outer Disk of the Triangulum Spiral Galaxy
Stars with masses in the range from about 1.3 to 3.5 Mo pass through an
evolutionary stage where they become carbon stars. In this stage, which lasts a
few Myr, these stars are extremely luminous pulsating giants. They are so
luminous in the near-infrared that just a few of them can double the integrated
luminosity of intermediate-age (0.6 to 2 Gyr) Magellanic Cloud clusters at 2.2
microns. Astronomers routinely use such near-infrared observations to minimize
the effects of dust extinction, but it is precisely in this band that carbon
stars can contribute hugely. The actual contribution of carbon stars to the
outer disk light of evolving spiral galaxies has not previously been
morphologically investigated. Here we report new and very deep near-IR images
of the Triangulum spiral galaxy M33=NGC 598, delineating spectacular arcs of
carbon stars in its outer regions. It is these arcs which dominate the
near-infrared m=2 Fourier spectra of M33. We present near-infrared photometry
with the Hale 5-m reflector, and propose that the arcs are the signature of
accretion of low metallicity gas in the outer disk of M33.Comment: 4 pages, 4 figures. Revised version submitted to A&A Letter
- …