7 research outputs found

    Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation

    Get PDF
    Mutations in HNRNPA1 encoding heterogeneous nuclear ribonucleoprotein (hnRNP) A1 are a rare cause of amyotrophic lateral sclerosis (ALS) and multisystem prate inopathy (MSP). hnRNPA1 is part of the group of RNA-binding proteins (RBPs) that assemble with RNA to form RNPs. hnRNPs are concentrated in the nucleus and function in pre-mRNA splicing, mRNA stability, and the regulation of transcription and translation. During stress, hnRNPs, mRNA, and other RBPs condense in the cytoplasm to form stress granules (SGs). SGs are implicated in the pathogenesis of (neuro-)degenerative diseases, including ALS and inclusion body myopathy (IBM). Mutations in RBPs that affect SG biology, including FUS, TOP-43, hnRNPA1, hnRNPA2B1, and TIA1, underlie ALS, IBM, and other neurodegenerative diseases. Here, we characterize 4 potentially novel HNRNPA1 mutations (yielding 3 protein variants: *321Eext*6, *321Qext*6, and G304Nfs*3) and 2 known HNRNPA1 mutations (P288A and D262V), previously connected to ALS and MSP, in a broad spectrum of patients with hereditary motor neuropathy, ALS, and myopathy. We establish that the mutations can have different effects on hnRNPA1 fibrillization, liquid-liquid phase separation, and SG dynamics. P288A accelerated fibrillization and decelerated SG disassembly, whereas *321Eext*6 had no effect on fibrillization but decelerated SG disassembly. By contrast, G3D4Nfs*3 decelerated fibrillization and impaired liquid phase separation. Our findings suggest different underlying pathomechanisms for HNRNPA1 mutations with a possible link to clinical phenotypes.Functional Genomics of Muscle, Nerve and Brain Disorder

    De novo INF2 mutations expand the genetic spectrum of hereditary neuropathy with glomerulopathy

    No full text
    Objective: Identification of mutations in the inverted formin-2 (INF2) gene in patients with Charcot-Marie-Tooth (CMT) disease combined with focal segmental glomerulosclerosis (FSGS) in order to expand the genetic and phenotypic spectrum. Methods: We sequenced INF2 in 5 patients with CMT disease and FSGS. Mutations were subsequently screened in family members of the index patient and 264 control individuals. Results: In 3 patients, we detected 2 novel de novo INF2mutations (p.Leu77Arg and p.Leu69-Ser72-del) and a third, most likely de novo mutation (p.Gly114Asp). One of our patients displayed intellectual disability, a phenotypic characteristic not previously associated with INF2. The same patient also showed a more pronounced sensorineural hearing loss than described before. Conclusions: In exon 2 of INF2, we identified 3 novel mutations that likely affect the protein structure and function. Our findings expand the genetic spectrum of INF2-associated disorders and broaden the associated phenotype with the co-occurrence of intellectual disability and more severe hearing loss than previously reported. De novo INF2 mutations may be more common in patients with CMT disease and FSGS in comparison to FSGS alone. Furthermore, renal dysfunction is more severe and starts earlier in life when associated with CMT disease. Our study confirms that INF2 mutations are a major cause of disease in patients with CMT disease and early signs of nephropathy. Diagnostic screening of INF2 is strongly recommended in isolated patients presenting with CMT disease and FSGS. © 2013 American Academy of Neurology

    Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3

    No full text
    Many neurodegenerative disorders present with sensory loss. In the group of hereditary sensory and autonomic neuropathies loss of nociception is one of the disease hallmarks. To determine underlying factors of sensory neurodegeneration we performed whole-exome sequencing in affected individuals with the disorder. In a family with sensory neuropathy with loss of pain perception and destruction of the pedal skeleton we report a missense mutation in a highly conserved amino acid residue of atlastin GTPase 3 (ATL3), an endoplasmic reticulum-shaping GTPase. The same mutation (p.Tyr192Cys) was identified in a second family with similar clinical outcome by screening a large cohort of 115 patients with hereditary sensory and autonomic neuropathies. Both families show an autosomal dominant pattern of inheritance and the mutation segregates with complete penetrance. ATL3 is a paralogue of ATL1, a membrane curvature-generating molecule that is involved in spastic paraplegia and hereditary sensory neuropathy. ATL3 proteins are enriched in three-way junctions, branch points of the endoplasmic reticulum that connect membranous tubules to a continuous network. Mutant ATL3 p.Tyr192Cys fails to localize to branch points, but instead disrupts the structure of the tubular endoplasmic reticulum, suggesting that the mutation exerts a dominant-negative effect. Identification of ATL3 as novel disease-associated gene exemplifies that long-term sensory neuronal maintenance critically depends on the structural organisation of the endoplasmic reticulum. It emphasizes that alterations in membrane shaping-proteins are one of the major emerging pathways in axonal degeneration and suggests that this group of molecules should be considered in neuroprotective strategies

    Inkorporationsmeßstelle-Inkorporationsüberwachung im 4. Quartal 2002

    Get PDF
    This is the final version of the article. Available from Lippincott, Williams & Wilkins via the DOI in this record.Objective: To identify the genetic cause of disease in 2 previously unreported families with forms of distal hereditary motor neuropathies (dHMNs). Methods: The first family comprises individuals affected by dHMN type V, which lacks the cardinal clinical feature of vocal cord paralysis characteristic of dHMN-VII observed in the second family. Next-generation sequencing was performed on the proband of each family. Variants were annotated and filtered, initially focusing on genes associated with neuropathy. Candidate variants were further investigated and confirmed by dideoxy sequence analysis and cosegregation studies. Thorough patient phenotyping was completed, comprising clinical history, examination, and neurologic investigation. Results: dHMNs are a heterogeneous group of peripheral motor neuron disorders characterized by length-dependent neuropathy and progressive distal limb muscle weakness and wasting. We previously reported a dominant-negative frameshift mutation located in the concluding exon of theSLC5A7gene encoding the choline transporter (CHT), leading to protein truncation, as the likely cause of dominantly-inherited dHMN-VII in an extended UK family. In this study, our genetic studies identified distinct heterozygous frameshift mutations located in the last coding exon ofSLC5A7, predicted to result in the truncation of the CHT C-terminus, as the likely cause of the condition in each family. Conclusions: This study corroborates C-terminal CHT truncation as a cause of autosomal dominant dHMN, confirming upper limb predominating over lower limb involvement, and broadening the clinical spectrum arising from CHT malfunction.This work was supported by the Association Belge contre les Maladies Neuromusculaire (ABMM)—Aide à la Recherche ASBL and the EU FP7/2007 2013 under grant agreement number 2012—305121 (NEUROMICS), the Medical Research Council (G1002279 to A.H.C.), and the Neurosciences Research Foundation (to A.H.C. and E.L.B.). J.B. is supported by a Senior Clinical Researcher mandate of the Research Fund—Flanders (FWO)

    Idiopathic Nephrotic Syndrome in Children: Genetic Aspects

    No full text
    corecore