216 research outputs found

    Genome Symbols in the Triticeae (Poaceae)

    Get PDF
    A system for the application of nuclear genome symbols in the tribe Triticeae is proposed. It is based mainly on prevailing symbols. In agreement with this, the system uses individual upper case letters as symbols in the first place. Since the number of basic nuclear genomes in the Triticeae exceeds the number of single letters in the Roman alphabet, some basic genomes are designated with an upper case letter followed by a lower case letter, e.g. Ns for the genome of Psathyrostachys. Superscripts in small letters are used when modified versions of a basic genome are referred to, e.g. HP for the genome found in Hordeum pusillum. Unknown or equivocally identified genomes are designated by X followed by a lower case letter, e.g. Xu for Hordeum murinum. Underline of the relevant genome symbol can be used to indicate the origin of the cytoplasm

    Morphology, phylogeny, and taxonomy of Microthlaspi (Brassicaceae: Coluteocarpeae) and related genera

    Get PDF
    The genus Thlaspi has been variously subdivided since its description by Linnaeus in 1753, but due to similarities in fruit shape several segregates have still not gained broad recognition, despite the fact that they are not directly related to Thlaspi. This applies especially to segregates now considered to belong to the tribe Coluteocarpeae, which includes several well-studied taxa, e.g., Noccaea caerulescens (syn. Thlaspi caerulescens), and the widespread Microthlaspi perfoliatum (syn. Thlaspi perfoliatum). The taxonomy of this tribe is still debated, as a series of detailed monographs on Coluteocarpeae was not published in English and a lack of phylogenetic resolution within this tribe was found in previous studies. The current study presents detailed phylogenetic investigations and a critical review of morphological features, with focus on taxa previously placed in Microthlaspi. Based on one nuclear (ITS) and two chloroplast (matK, trnL-F) loci, four strongly supported major groups were recovered among the Coluteocarpeae genera included, corresponding to Ihsanalshehbazia gen. nov., Friedrichkarlmeyeria gen. nov., Microthlaspi s.str., and Noccaea s.l. In addition, two new species of Microthlaspi, M. sylvarum-cedri sp. nov. and M. mediterraneo-orientale sp. nov., were discovered, which are well supported by both morphological and molecular data. Furthermore, M. erraticum comb. nov. (diploid) and M. perfoliatum s.str. (polyploid) were shown to be distinct species, phylogenetically widely separate, but with some overlap in several morphological characters. Detailed descriptions, notes on taxonomy, geographical distribution, and line drawings for the new species and each species previously included in Microthlaspi are provided. In addition, the current taxonomic state of the tribe Coluteocarpeae is briefly discussed and it is concluded that while several annual taxa are clearly distinct from Noccaea, many perennial taxa, after thorough phylogenetic and morphological investigations, may have to be merged with this genus. © International Association for Plant Taxonomy (IAPT) 2016

    Chromosomal polymorphism of ribosomal genes in the genus Oryza

    Get PDF
    The genes encoding for 18S–5.8S–28S ribosomal RNA (rDNA) are both conserved and diversified. We used rDNA as probe in the fluorescent in situ hybridization (rDNA-FISH) to localized rDNAs on chromosomes of 15 accessions representing ten Oryza species. These included cultivated and wild species of rice, and four of them are tetraploids. Our results reveal polymorphism in the number of rDNA loci, in the number of rDNA repeats, and in their chromosomal positions among Oryza species. The numbers of rDNA loci varies from one to eight among Oryza species. The rDNA locus located at the end of the short arm of chromosome 9 is conserved among the genus Oryza. The rDNA locus at the end of the short arm of chromosome 10 was lost in some of the accessions. In this study, we report two genome specific rDNA loci in the genus Oryza. One is specific to the BB genome, which was localized at the end of the short arm of chromosome 4. Another may be specific to the CC genome, which was localized in the proximal region of the short arm of chromosome 5. A particular rDNA locus was detected as stretched chromatin with bright signals at the proximal region of the short arm of chromosome 4 in O.grandiglumis by rDNA-FISH. We suggest that chromosomal inversion and the amplification and transposition of rDNA might occur during Oryza species evolution. The possible mechanisms of cyto-evolution in tetraploid Oryza species are discussed

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed

    Progenitor-Derivative Relationships of Hordeum Polyploids (Poaceae, Triticeae) Inferred from Sequences of TOPO6, a Nuclear Low-Copy Gene Region

    Get PDF
    Polyploidization is a major mechanism of speciation in plants. Within the barley genus Hordeum, approximately half of the taxa are polyploids. While for diploid species a good hypothesis of phylogenetic relationships exists, there is little information available for the polyploids (4×, 6×) of Hordeum. Relationships among all 33 diploid and polyploid Hordeum species were analyzed with the low-copy nuclear marker region TOPO6 for 341 Hordeum individuals and eight outgroup species. PCR products were either directly sequenced or cloned and on average 12 clones per individual were included in phylogenetic analyses. In most diploid Hordeum species TOPO6 is probably a single-copy locus. Most sequences found in polyploid individuals phylogenetically cluster together with sequences derived from diploid species and thus allow the identification of parental taxa of polyploids. Four groups of sequences occurring only in polyploid taxa are interpreted as footprints of extinct diploid taxa, which contributed to allopolyploid evolution. Our analysis identifies three key species involved in the evolution of the American polyploids of the genus. (i) All but one of the American tetraploids have a TOPO6 copy originating from the Central Asian diploid H. roshevitzii, the second copy clustering with different American diploid species. (ii) All hexaploid species from the New World have a copy of an extinct close relative of H. californicum and (iii) possess the TOPO6 sequence pattern of tetraploid H. jubatum, each with an additional copy derived from different American diploids. Tetraploid H. bulbosum is an autopolyploid, while the assumed autopolyploid H. brevisubulatum (4×, 6×) was identified as allopolyploid throughout most of its distribution area. The use of a proof-reading DNA polymerase in PCR reduced the proportion of chimerical sequences in polyploids in comparison to Taq polymerase

    Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain

    Full text link

    Test of QED in e+e−→γγ at LEP

    Full text link
    corecore