128 research outputs found
Prospects for the measurement of the electron electric dipole moment using YbF
We discuss an experiment underway at Imperial College London to measure the
permanent electric dipole moment (EDM) of the electron using a molecular beam
of YbF. We describe the measurement method, which uses a combination of laser
and radiofrequency resonance techniques to detect the spin precession of the
YbF molecule in a strong electric field. We pay particular attention to the
analysis scheme and explore some of the possible systematic effects which might
mimic the EDM signal. Finally, we describe technical improvements which should
increase the sensitivity by more than an order of magnitude over the current
experimental limit.Comment: 6 pages, 2 figure
Franck-Condon Factors and Radiative Lifetime of the A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} Transition of Ytterbium Monoflouride, YbF
The fluorescence spectrum resulting from laser excitation of the
A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} (0,0) band of ytterbium monofluoride, YbF, has
been recorded and analyzed to determine the Franck-Condon factors. The measured
values are compared with those predicted from Rydberg-Klein-Rees (RKR)
potential energy curves. From the fluorescence decay curve the radiative
lifetime of the A^{2}\Pi_{1/2} state is measured to be 28\pm2 ns, and the
corresponding transition dipole moment is 4.39\pm0.16 D. The implications for
laser cooling YbF are discussed.Comment: 5 pages, 5 figure
Space-time defects and teleparallelism
We consider the class of space-time defects investigated by Puntigam and
Soleng. These defects describe space-time dislocations and disclinations
(cosmic strings), and are in close correspondence to the actual defects that
arise in crystals and metals. It is known that in such materials dislocations
and disclinations require a small and large amount of energy, respectively, to
be created. The present analysis is carried out in the context of the
teleparallel equivalent of general relativity (TEGR). We evaluate the
gravitational energy of these space-time defects in the framework of the TEGR
and find that there is an analogy between defects in space-time and in
continuum material systems: the total gravitational energy of space-time
dislocations and disclinations (considered as idealized defects) is zero and
infinit, respectively.Comment: 22 pages, no figures, to appear in the Class. Quantum Gravit
Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis
We recently reported a new measurement of the electron's electric dipole
moment using YbF molecules [Nature 473, 493 (2011)]. Here, we give a more
detailed description of the methods used to make this measurement, along with a
fuller analysis of the data. We show how our methods isolate the electric
dipole moment from imperfections in the experiment that might mimic it. We
describe the systematic errors that we discovered, and the small corrections
that we made to account for these. By making a set of additional measurements
with greatly exaggerated experimental imperfections, we find upper bounds on
possible uncorrected systematic errors which we use to determine the systematic
uncertainty in the measurement. We also calculate the size of some systematic
effects that have been important in previous electric dipole moment
measurements, such as the motional magnetic field effect and the geometric
phase, and show them to be negligibly small in the present experiment. Our
result is consistent with an electric dipole moment of zero, so we provide
upper bounds to its size at various confidence levels. Finally, we review the
prospects for future improvements in the precision of the experiment.Comment: 35 pages, 15 figure
Quantifying the UK's carbon dioxide flux: An atmospheric inverse modelling approach using a regional measurement network
We present a method to derive atmosphericobservation-based estimates of carbon dioxide (CO 2 ) fluxes at the national scale, demonstrated using data from a network of surface tall-tower sites across the UK and Ireland over the period 2013-2014. The inversion is carried out using simulations from a Lagrangian chemical transport model and an innovative hierarchical Bayesian Markov chain Monte Carlo (MCMC) framework, which addresses some of the traditional problems faced by inverse modelling studies, such as subjectivity in the specification of model and prior uncertainties. Biospheric fluxes related to gross primary productivity and terrestrial ecosystem respiration are solved separately in the inversion and then combined a posteriori to determine net ecosystem exchange of CO 2 . Two different models, Data Assimilation Linked Ecosystem Carbon (DALEC) and Joint UK Land Environment Simulator (JULES), provide prior estimates for these fluxes. We carry out separate inversions to assess the impact of these different priors on the posterior flux estimates and evaluate the differences between the prior and posterior estimates in terms of missing model components. The Numerical Atmospheric dispersion Modelling Environment (NAME) is used to relate fluxes to the measurements taken across the regional network. Posterior CO2 estimates from the two inversions agree within estimated uncertainties, despite large differences in the prior fluxes from the different models. With our method, averaging results from 2013 and 2014, we find a total annual net biospheric flux for the UK of 8±79 TgCO 2 yr -1 (DALEC prior) and 64±85 TgCO 2 yr -1 (JULES prior), where negative values represent an uptake of CO 2 . These biospheric CO 2 estimates show that annual UK biospheric sources and sinks are roughly in balance. These annual mean estimates consistently indicate a greater net release of CO 2 than the prior estimates, which show much more pronounced uptake in summer months
Thermomechanical couplings in shape memory alloy materials
In this work we address several theoretical and computational issues which are related to the thermomechanical modeling of shape memory alloy materials. More specifically, in this paper we revisit a non-isothermal version of the theory of large deformation generalized plasticity which is suitable for describing the multiple and complex mechanisms occurring in these materials during phase transformations. We also discuss the computational implementation of a generalized plasticity based constitutive model and we demonstrate the ability of the theory in simulating the basic patterns of the experimentally observed behavior by a set of representative numerical examples
Tracking the spatial diffusion of influenza and norovirus using telehealth data: A spatiotemporal analysis of syndromic data
Background: Telehealth systems have a large potential for informing public health authorities in
an early stage of outbreaks of communicable disease. Influenza and norovirus are common viruses
that cause significant respiratory and gastrointestinal disease worldwide. Data about these viruses
are not routinely mapped for surveillance purposes in the UK, so the spatial diffusion of national
outbreaks and epidemics is not known as such incidents occur. We aim to describe the
geographical origin and diffusion of rises in fever and vomiting calls to a national telehealth system,
and consider the usefulness of these findings for influenza and norovirus surveillance.
Methods: Data about fever calls (5- to 14-year-old age group) and vomiting calls (≥ 5-year-old age
group) in school-age children, proxies for influenza and norovirus, respectively, were extracted
from the NHS Direct national telehealth database for the period June 2005 to May 2006. The
SaTScan space-time permutation model was used to retrospectively detect statistically significant
clusters of calls on a week-by-week basis. These syndromic results were validated against existing
laboratory and clinical surveillance data.
Results: We identified two distinct periods of elevated fever calls. The first originated in the
North-West of England during November 2005 and spread in a south-east direction, the second
began in Central England during January 2006 and moved southwards. The timing, geographical
location, and age structure of these rises in fever calls were similar to a national influenza B
outbreak that occurred during winter 2005–2006. We also identified significantly elevated levels of
vomiting calls in South-East England during winter 2005–2006.
Conclusion: Spatiotemporal analyses of telehealth data, specifically fever calls, provided a timely
and unique description of the evolution of a national influenza outbreak. In a similar way the tool
may be useful for tracking norovirus, although the lack of consistent comparison data makes this
more difficult to assess. In interpreting these results, care must be taken to consider other
infectious and non-infectious causes of fever and vomiting. The scan statistic should be considered
for spatial analyses of telehealth data elsewhere and will be used to initiate prospective geographical
surveillance of influenza in England.
Adolescent health in rural Ghana: A cross-sectional study on the co-occurrence of infectious diseases, malnutrition and cardio-metabolic risk factors.
In sub-Saharan Africa, infectious diseases and malnutrition constitute the main health problems in children, while adolescents and adults are increasingly facing cardio-metabolic conditions. Among adolescents as the largest population group in this region, we investigated the co-occurrence of infectious diseases, malnutrition and cardio-metabolic risk factors (CRFs), and evaluated demographic, socio-economic and medical risk factors for these entities. In a cross-sectional study among 188 adolescents in rural Ghana, malarial infection, common infectious diseases and Body Mass Index were assessed. We measured ferritin, C-reactive protein, retinol, fasting glucose and blood pressure. Socio-demographic data were documented. We analyzed the proportions (95% confidence interval, CI) and the co-occurrence of infectious diseases (malaria, other common diseases), malnutrition (underweight, stunting, iron deficiency, vitamin A deficiency [VAD]), and CRFs (overweight, obesity, impaired fasting glucose, hypertension). In logistic regression, odds ratios (OR) and 95% CIs were calculated for the associations with socio-demographic factors. In this Ghanaian population (age range, 14.4-15.5 years; males, 50%), the proportions were for infectious diseases 45% (95% CI: 38-52%), for malnutrition 50% (43-57%) and for CRFs 16% (11-21%). Infectious diseases and malnutrition frequently co-existed (28%; 21-34%). Specifically, VAD increased the odds of non-malarial infectious diseases 3-fold (95% CI: 1.03, 10.19). Overlap of CRFs with infectious diseases (6%; 2-9%) or with malnutrition (7%; 3-11%) was also present. Male gender and low socio-economic status increased the odds of infectious diseases and malnutrition, respectively. Malarial infection, chronic malnutrition and VAD remain the predominant health problems among these Ghanaian adolescents. Investigating the relationships with evolving CRFs is warranted
- …