12 research outputs found

    Genome-wide analyses reveal a potential role for the <em>MAPT</em>, <em>MOBP</em>, and <em>APOE </em>loci in sporadic frontotemporal dementia

    Get PDF
    \ua9 2024 The Author(s)Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 7 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 7 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 7 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex

    Genetic variation in APOE, GRN, and TP53 are phenotype modifiers in frontotemporal dementia

    No full text
    Frontotemporal dementia (FTD) is a clinical, genetic, and pathologic heterogeneous group of neurodegenerative diseases. In this study, we investigated the role of APO\u1904, rs5848 in GRN, and rs1042522 in TP53 gene as disease risk factors and/or phenotype modifiers in 440 FTD patients, including 175 C9orf72 expansion carriers. We found that the C9orf72 expansion carriers showing an earlier age at onset (p &lt; 0.001). Among the clinical groups, the FTD-MND (motoneuron disease) showed the lowest survival (hazard ratio [HR] = 4.12), and the progressive nonfluent aphasia group showed the highest onset age (p = 0.03). In our cohort, the rs1042522 in TP53 was associated with disease onset (p = 0.02) and survival (HR = 1.73) and rs5848 GRN with a significantly shorter survival in CC homozygous patients (HR = 1.98). The frequency of APO\u1904 carriers was significantly increased in the C9orf72 noncarriers (p = 0.022). Although validation of our findings is necessary, our results suggest that TP53, GRN, and APOE genes may act as phenotype modifiers in FTD and should be considered in future clinical trials

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    No full text
    The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC gamma 2 pathway as drug-target

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    No full text
    The IPDGC (The International Parkinson Disease Genomics Consortium) and EADB (Alzheimer Disease European DNA biobank) are listed correctly as an author to the article, however, they were incorrectly listed more than once

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    No full text
    Molecular Epidemiolog

    A nonsynonymous mutation in <em>PLCG<sub>2</sub></em><sub></sub> reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF

    Correction to: A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity (Acta Neuropathologica, (2019), 138, 2, (237-250), 10.1007/s00401-019-02026-8)

    No full text
    The IPDGC (The International Parkinson Disease Genomics Consortium) and EADB (Alzheimer Disease European DNA biobank) are listed correctly as an author to the article, however, they were incorrectly listed more than once

    Correction to: A nonsynonymous mutation in <em>PLCG<sub>2</sub></em> reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF
    corecore