1,353 research outputs found

    Nonequilibrium phase transitions and stationary state solutions of a three-dimensional random-field Ising model under a time dependent periodic external field

    Full text link
    Nonequilibrium behavior and dynamic phase transition properties of a kinetic Ising model under the influence of periodically oscillating random-fields have been analyzed within the framework of effective field theory (EFT) based on a decoupling approximation (DA). Dynamic equation of motion has been solved for a simple cubic lattice (q=6q=6) by utilizing a Glauber type stochastic process. Amplitude of the sinusoidally oscillating magnetic field is randomly distributed on the lattice sites according to bimodal and trimodal distribution functions. For a bimodal type of amplitude distribution, it is found in the high frequency regime that the dynamic phase diagrams of the system in temperature versus field amplitude plane resemble the corresponding phase diagrams of pure kinetic Ising model. Our numerical results indicate that for a bimodal distribution, both in the low and high frequency regimes, the dynamic phase diagrams always exhibit a coexistence region in which the stationary state (ferro or para) of the system is completely dependent on the initial conditions whereas for a trimodal distribution, coexistence region disappears depending on the values of system parameters.Comment: 11 pages, 11 figure

    Effective field theory analysis of 3D random field Ising model on isometric lattices

    Full text link
    Ising model with quenched random magnetic fields is examined for single Gaussian, bimodal and double Gaussian random field distributions by introducing an effective field approximation that takes into account the correlations between different spins that emerge when expanding the identities. Random field distribution shape dependencies of the phase diagrams and magnetization curves are investigated for simple cubic, body centered and face centered cubic lattices. The conditions for the occurrence of reentrant behavior and tricritical points on the system are also discussed in detail.Comment: 13 pages, 8 figure

    Variable structure based control strategy for treatment of HCV infection

    Get PDF
    Hepatitis C is such a harmful disease which can lead to serious health problems and it is caused by the Hepatitis C Virus (HCV) which causes liver inflammation and sometimes liver cancer. In this work, the control treatment strategy for HCV infection has been proposed. The advanced nonlinear dynamical mathematical model of HCV that has two control inputs and three state variables such as virions, infected hepatocytes and uninfected hepatocytes are considered for controller design in this research work. Moreover, four nonlinear controllers such as the Fractional Order Terminal Sliding Mode Controller (FOTSMC), Integral Terminal Sliding Mode Controller (ITSMC), Double Integral Sliding Mode Controller (DISMC) and Integral Sliding Mode Controller (ISMC) have been proposed in this work for HCV infection control inside the human body. In order to control the amount of uninfected hepatocytes to its required maximum safe limit, controllers are designed for antiviral therapy in which the amount of virions and infected hepatocytes are tracked to zero. One control input is ribavirin which blocks virions production and the other is pegylated interferon (peg-IFN-a) that acts as reducing infected hepatocytes. By doing so, uninfected hepatocytes increase and achieve the required maximum safe limit. To prove the stability of the whole system, Lyapunov stability analysis is used in this work. Simulation results and comparative analysis are carried out by using MATLAB/Simulink. It can be depicted from the given results that the virions and infected hepatocytes are reduced to their required levels completely using FOTSMC and the Sustained Virologic Response (SVR) rate is also enhanced in it. It reduces the treatment period as compared to previous strategies introduced in the literature and also system behaves very nicely even in the presence of un-modeled disturbances

    Modeling and Experimental Investigation of Laminar Ceiling Air Distribution System for Operating Room in Merjan Teaching Hospital

    Get PDF
    Room air distribution in operating rooms is critical to successful surgical treatment. The present study investigated the effects of the location of the air supply and exhaust grills on the air movement and air parameters inside an operating room. This paper presents an experimental and numerical analysis of air distribution in the operating room. The experimental work was conducted in an operating room in Merjan Teaching Hospital in the city of Babylon. Air was supplied from one square plenum box located in the middle of the ceiling, while air was exhausted through eight grills: large exhaust grills in the four upper corners and small exhaust grills in the four lower corners. In the theoretical work, a model of the operating room was developed and two cases were analyzed using the FLUEN 6.3.26 software program. The first case included all eight exhaust grills, while the second case included only the four lower exhaust grills. The ceiling system gave good ventilation for air distribution inside the operating room. There was no clear effect of the small exhaust grills located in the upper corners of the operating room. The height of the ceiling room is an effective factor in air distribution

    Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones

    Get PDF
    In critical healthcare units, such as operation theaters and intensive care units, healthcare workers require specific temperature environments at different stages of an operation, which depends upon the condition of the patient and the requirements of the surgical procedures. Therefore, the need for a dynamically controlled temperature environment and the availability of the required heating/cooling electric power is relatively more necessary for the provision of a better healthcare environment as compared to other commercial and residential buildings, where only comfortable room temperature is required. In order to establish a dynamic temperature zone, a setpoint regulator is required that can control the zone temperature with a fast dynamic response, little overshoot, and a low settling time. Thus, two zone temperature regulators have been proposed in this article, including double integral sliding mode control (DISMC) and integral terminal sliding mode control (ITSMC). A realistic scenario of a hospital operation theater is considered for evaluating their responses and performance to desired temperature setpoints. The performance analysis and superiority of the proposed controllers have been established by comparison with an already installed Johnson temperature controller (JTC) for various time spans and specific environmental conditions that require setpoints based on doctors’ and patients’ desires. The proposed controllers showed minimal overshoot and a fast settling response, making them ideal controllers for operation theater (OT) zone temperature control

    Emergency Contraception: Knowledge and Attitudes of Family Physicians of a Teaching Hospital, Karachi, Pakistan

    Get PDF
    This study was conducted to assess the knowledge of family medicine providers and their attitudes towards emergency contraception in a teaching hospital in Karachi, Pakistan. A 21-item questionnaire containing the demographic profile of respondents and questions concerning knowledge of and attitudes towards emergency contraception was distributed among participants. In total, 45 interviews were conducted, with a response rate of 100%, with faculty physicians (33%), residents (27%), medical officers (40%), 36% male and 64% female physicians; of them, the majority (64%) were married. Although the large majority (71%) of the respondents reported considerable familiarity with emergency contraception, objective assessment revealed deficiencies in their knowledge. About 38% of the participants incorrectly chose menstrual irregularity as the most common side-effect of progestin-only emergency contraception pills, and only 33% answered that emergency contraception was not an abortifacient while 42% were unsure. Forty percent of the physicians prescribed emergency contraception in the past. The large majority (71%) of the physicians were familiar with emergency contraception, yet deficiencies in knowledge inaccuracies were identified. Barriers to its use were identified as ‘it will promote promiscuity’ (31%), religious/ethical reasons (27%), liability (40%), teratogenicity (44%), and inexperience (40%). Overall attitudes regarding emergency contraception were positive; however, most (82%) physicians were unsatisfied with their current knowledge of emergency contraception, and there was a discrepancy between perceptions of physicians and actual knowledge. Interventions providing education to family physicians regarding emergency contraception is strongly recommended

    Enhancement in thermal and mechanical properties of bricks

    Get PDF
    A new type of porous brick is proposed. Sawdust is initially well mixed with wet clay in order to create voids inside the brick during the firing process. The voids will enhance the total performance of the brick due to the reduction of its density and thermal conductivity and a minor reduction of its compressive stress. All these properties have been measured experimentally and good performance has been obtained. Although a minor reduction in compressive stress has been observed with increased porosity, this property has still been larger than that of the common used hollow brick. Data obtained by this work lead to a new type of effective brick having a good performance with no possibility that mortar enters inside the holes which is the case with the common used hollow bricks. The mortar has a determent effect on thermal properties of the wall since it has some higher thermal conductivity and density than that of brick which increases the wall overall density and thermal conductivity of the wall

    Effect of zinc supplementation on growth Hormone Insulin growth factor axis in short Egyptian children with zinc deficiency

    Get PDF
    BACKGROUND: The relationship between zinc (Zn) and growth hormone-insulin growth factor (GH-IGF) system and how Zn therapy stimulates growth in children has not been clearly defined in humans. Thus, we aimed to assess GH-IGF axis in short children with Zn deficiency and to investigate the effect of Zn supplementation on these parameters. METHODS: Fifty pre-pubertal Egyptian children with short stature and Zn deficiency were compared to 50 age-, sex-, and pubertal stage- matched controls. All subjects were subjected to history, auxological assessment and measurement of serum Zn, IGF-1, insulin growth factor binding protein-3 (IGFBP-3); and basal and stimulated GH before and 3 months after Zn supplementation (50 mg/day). RESULTS: After 3 months of Zn supplementation in Zn-deficient patients, there were significant increases in height standard deviation score (SDS, P = 0.033), serum Zn (P < 0.001), IGF-1 (P < 0.01), IGF-1 standard deviation score (SDS,P < 0.01) and IGFBP-3 (P = 0.042). Zn rose in all patients but reached normal ranges in 64 %, IGF-1 levels rose in 60 % but reached normal ranges in 40 % and IGFBP-3 levels rose in 40 % but reached reference ranges in 22 %. Growth velocity (GV) SDS did not differ between cases and controls (p = 0.15) but was higher in GH-deficient patients than non-deficient ones, both having Zn deficiency (p = 0.03). CONCLUSION: Serum IGF-1 and IGFBP-3 levels were low in short children with Zn deficiency, and increased after Zn supplementation for 3 months but their levels were still lower than the normal reference ranges in most children; therefore, Zn supplementation may be necessary for longer periods
    • …
    corecore