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A B S T R A C T

Hepatitis C is such a harmful disease which can lead to serious health problems and it is caused by the Hepatitis
C Virus (HCV) which causes liver inflammation and sometimes liver cancer. In this work, the control treatment
strategy for HCV infection has been proposed. The advanced nonlinear dynamical mathematical model of HCV
that has two control inputs and three state variables such as virions, infected hepatocytes and uninfected
hepatocytes are considered for controller design in this research work. Moreover, four nonlinear controllers
such as the Fractional Order Terminal Sliding Mode Controller (FOTSMC), Integral Terminal Sliding Mode
Controller (ITSMC), Double Integral Sliding Mode Controller (DISMC) and Integral Sliding Mode Controller
(ISMC) have been proposed in this work for HCV infection control inside the human body. In order to control
the amount of uninfected hepatocytes to its required maximum safe limit, controllers are designed for antiviral
therapy in which the amount of virions and infected hepatocytes are tracked to zero. One control input is
ribavirin which blocks virions production and the other is pegylated interferon (peg-IFN-𝛼) that acts as reducing
infected hepatocytes. By doing so, uninfected hepatocytes increase and achieve the required maximum safe
limit. To prove the stability of the whole system, Lyapunov stability analysis is used in this work. Simulation
results and comparative analysis are carried out by using MATLAB/Simulink. It can be depicted from the
given results that the virions and infected hepatocytes are reduced to their required levels completely using
FOTSMC and the Sustained Virologic Response (SVR) rate is also enhanced in it. It reduces the treatment
period as compared to previous strategies introduced in the literature and also system behaves very nicely
even in the presence of un-modeled disturbances.
1. Introduction

Hepatitis C Virus (HCV) is the most commonly known liver dis-
ease which was first identified in 1989. Serological tests are used to
discover Hepatitis A Virus (HAV) and Hepatitis B Virus (HBV) during
the 1970s and 1980s. Further research has discovered some Non-A,
Non-B Hepatitis (NANBH) that are not associated with HAV or HBV.
This particular clone came to be named as HCV [1]. World Health
Organization published a report in 2017 in which it was illustrated
that almost 71 million people had been experiencing HCV infection
globally. Nearly 14 million people were diagnosed with HCV infection
but only 1.1 million patients had gotten proper treatment [2]. HCV is a
positive-strand Ribonucleic Acid (RNA) virus because it belongs to the
Hepacivirus genus and Flaviviridae family.

Researchers started their efforts to analyze the kinetic modeling of
the HCV virus after its discovery in the late 20th century. Neumann
proposed very first mathematical model in [3] which was adopted from
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HIV infections [4] and HBV [5]. Interferon-based treatment was carried
out through this model. The production rate of virions was blocked by
it. It affected healthy cells a little bit. By the inclusion of the effect of
ribavirin in [3], the impact of peg-IFN-𝛼 was improved of peg-IFN-𝛼 in
[6]. This model worked in two phases; during the first phase, it was
depicted that peg-IFN-𝛼 was used that had great importance and the
virus declined, while during the second phase in the presence of low
peg-IFN-𝛼 efficacy, a significant contribution was made by ribavirin. A
new model was proposed in [7] that had a tri-phasic declining pattern
of viral load. Under DAAS [8–12], some novice dynamical models for
HCV have been proposed in recent times. To develop further novice
models for stimulating therapeutic cells, various studies have been
conducted by considering the role of the immune system and these cells
reduce viral load [13–16].

A wide range of applications in ecological and biological problems
have been found through control theory [17]. A nonlinear controller
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provides a better way to achieve the desired control objectives of high-
order uncertain nonlinear systems [18,19]. Control theories have been
extensively utilized for HCV treatment. To solve the optimal control
problem of HCV, a fuzzy logic-based optimal control has been proposed
in [20]. To decrease the viral load using ribavirin and peg-IFN-𝛼, an
optimal function for HCV dynamics has been formulated in [21]. To
determine the optimal efficiency of combined ribavirin and peg-IFN-𝛼
treatment of HCV, an optimal function has also been proposed in it by
taking clinical trials into account [22]. In [23], an optimal treatment
program for HCV was considered that spans over 10 years. Offline
optimal control method was used to carry out this work and viral load
management also did not affect it. Furthermore, the controller design
was based on the nominal method in which the limitation of control
input was not taken into account, while the limitation of drug efficacy
should be taken into account during HCV treatment. For the control of
HBV infection, an adaptive nonlinear controller has been proposed in
[24]. In this work, practical limitations of treatment implementation
have not been considered. ANFIS-based optimal in [25] and adaptive
Lyapunov-based nonlinear adaptive control method in [26] have been
proposed for the control of HCV epidemic. In [27] and [28], an Adap-
tive Backstepping controller and modified Fractional order model have
been proposed in which the limitation of drug efficacy is considered.
The Basic Neumann model was used to carry out this work. Only
an IFN-based treatment strategy has been utilized in this proposed
control strategy while it lacked a proliferation rate of uninfected and
infected hepatocytes. Using [7] model, two control inputs ribavirin and
IFN have been introduced in [29] that are based on Lyapunov and
fuzzy logic nonlinear controllers. Simulation results of [29] showed that
infected hepatocytes and virions achieved the reference value after 30
and 55 days respectively.

To further improve the treatment time of HCV, a sliding mode-
based treatment strategy for the first time has been proposed on the
extended model of HCV [7] in this paper. Nonlinear sliding mode
controllers (SMC) ensure global convergence and has the ability to cater
for the uncertainties and external disturbance in the system model.
It has advantages such as robustness against external disturbance and
unpredictable parameter variations. To ensure the applicability of an
SMC variant best suited for our application several SMC variants have
been proposed.

In this proposed topology, drug efficacy limitation has been consid-
ered. Minimum drug quantity has been used to reduce the treatment
period and the rate of SVR is also enhanced in this topology. The
proposed controllers which are ISMC, DISMC, ITSMC and FOTSMC are
aimed to block and reduce virions and infected hepatocytes to their
required reference value. Consequently, uninfected hepatocytes will be
increased to the maximum safe limit. On the basis of properties such
as ripples/oscillations, overshoots/undershoots, settling time, transient
time and steady-state error (SSE), all the proposed controllers have
been compared with each other in the simulation result. To establish
the stability of the closed-loop disease control, the Lyapunov stability
theorem has been used. Two control inputs peg-IFN-𝛼 as 𝑢1 for reducing
infected hepatocytes and ribavirin as 𝑢2 for blocking virions are used
in the treatment strategies for HCV disease that are based on proposed
controllers in such manners to achieve the following goals:

• During treatment, virions and infected hepatocytes are required
to reduce and block to their desired reference value within 6–8
weeks.

• Uninfected hepatocytes are required to increase to their maximum
steady state value 𝑇𝑚𝑎𝑥.

• Stability of the system should be ensured.

After achieving the required objectives, the treatment is stopped and
blood samples of the patient are tested over the next 12 weeks. During
2

Fig. 1. Closed loop control of HCV system.

this testing, if any viral load is not detected then the patient is wholly
cured depicts that the patient further has no HCV.

This paper has been organized as follows: In Section 2, a mathe-
matical model of HCV has been illustrated. While in Section 3, control
algorithms are depicted. In Section 4, simulation results and discussion
have been presented for proposed controllers. Comparative analysis
and robustness performance have been explained in Section 5. The
conclusion of this work is drawn in Section 6. At the last of this
document, a list of references has been given.

2. Mathematical model

Neumann et al. [3] proposed the very first mathematical model
that was adopted from HIV and HBV models. Dahari had extended
research work on Neumann’s designed model and he considered this
model as a source of hepatocytes that ignores proliferation of infected
and uninfected hepatocytes (𝑟 = 0). Further, this model does not show
any tri-phasic behavior for viral load whereas, it shows the biphasic
decline of viral load under therapy. Thus, proliferation terms for both
infected and uninfected hepatocytes are added in [7]. It presents the
tri-phasic behavior of viral load. The first phase takes 1–4 days during
which virions show abrupt decay. The second phase takes 20–30 days to
virions decrease gradually further, in the third and final phases these
virions are eliminated completely. To illustrate the dynamics of HCV
infection, three state nonlinear mathematical HCV model is considered
in this work which is suggested in [7]:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑥1
𝑑𝑡

= 𝑠 + 𝑟𝑇 𝑥1 (1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

) − 𝑑𝑇 𝑥1 − (1 − 𝑢1)𝛽 𝑥3 𝑥1

𝑑𝑥2
𝑑𝑡

= (1 − 𝑢1)𝛽 𝑥3 𝑥1 + 𝑟𝑖 𝑥2 (1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

) − 𝛿 𝑥2

𝑑𝑥3
𝑑𝑡

= (1 − 𝑢2) 𝑝 𝑥2 − 𝑐 𝑥3

(1)

Where 𝑥1 is the amount of Uninfected Hepatocytes, 𝑥2 is the amount
of infected Hepatocytes which can prolifirate at 𝑟𝑇 and 𝑟𝑖 respectively.
𝑥3 is the amount virions of HCV. The other model parameters 𝑠, 𝑑𝑇 and
𝑇𝑚𝑎𝑥 are the rate of production, death rate, and maximum concentration
of Uninfected Hepatocytes, 𝛿 is the death rate of infected Hepatocytes
while 𝑐 and 𝑝 are the production and clearance rate per virions cells.

By the combination of ribavirin, chronic HCV is treated with peg-
IFN-𝛼. Virions production is blocked by Peg-IFN-𝛼 while the treatment
of de novo infection is allowed in it. Infected hepatocytes are reduced
and virions production is blocked inside the patient’s body using control
inputs parameters 𝑢1 and 𝑢2. In order to make treatment realistic,
the limitation of drug efficacy has been considered. It is ensured that
control input values must remain between 0 and 1.
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3. Control algorithms

The nonlinear nature of HCV system Eq. (1) requires the develop-
ment of nonlinear algorithms that help in achieving the desired goals.
This necessitates a closed-loop control model of the HCV system, which
is presented in Fig. 1. To track reference levels of desired states, an error
has been introduced in the system by taking the difference between
states and their reference values.

There are a number of nonlinear control systems that have been
developed by researchers but Sliding mode control is more viable for
providing solutions for variable structures systems. It is a nonlinear
control technique with high accuracy, low SSE, and robustness against
model uncertainties and disturbances. It is relatively easy to implement
and shows finite time convergence as compared to other nonlinear
control techniques [30].The higher-order SMCs have been opted for
further reducing the chattering and the SSE.

In SMC, first of all, we take a sliding surface (𝑆 = 0) to meet
the control objectives and then formulate such control law which
constrains the motion of system dynamics to this surface as shown in
Fig. 2. The reach-ability condition must be satisfied for guaranteeing
convergence to the sliding surface. The sliding coefficient is used
to control the convergence rate of the trajectory toward the sliding
surface. Chattering phenomena are observed in SMC. To reduce this
chattering, a strong reachability condition is used to design the control
law [31] by considering Eq. (2):

𝑆̇𝑖 = −𝐾 |𝑆𝑖|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆𝑖
𝜙𝑖

) (2)

where 𝛼 is a unit between 0 and 1, |𝑆𝑖|
𝛼 in the expression of 𝑆̇𝑖 increases

the speed of trajectory toward the sliding surface and 𝜙𝑖 is a small
positive number. 𝐾 is a tolerably large positive gain and 𝑆𝑖𝑔𝑛 is the
Signum function which is given as follows:

𝑆𝑖𝑔𝑛(𝑆) =

⎧

⎪

⎨

⎪

⎩

−1 𝑖𝑓 𝑆 < 0
0 𝑖𝑓 𝑆 = 0
1 𝑖𝑓 𝑆 > 0

In SMC, control input law can be divided into two parts such as:

𝑢(𝑡) = 𝑢𝑛𝑜𝑚 + 𝑢𝑠𝑤

𝑛𝑛𝑜𝑚 is nominal SMC control law which helps the system in converging
it to the equilibrium point, and 𝑛𝑠𝑤 is switching SMC control law which
keeps the system trajectory on the sliding surface until its falls on
the origin. The sliding surface for a general Multi Input Multi Output
(MIMO) system is defined as:

𝑆 = [𝑆1, 𝑆2......𝑆𝑛]𝑇 (3)

𝑆1, 𝑆2 up to 𝑆𝑛 are the sliding surfaces for different outputs.

3.1. Assumptions

• Gains of the Sliding surfaces are strictly positive real numbers.

• Design coefficient 𝑘 strictly positive real numbers.

• Design parameters 𝛼 and 𝜙 are taken between 0 and 1.

• Lyapunov candidate function is a positive definite.

3.2. Integral sliding mode controller

To reduce the SSE, reject uncertainties, and reduce chattering phe-
nomena, an integral term of errors has been introduced in the sliding
surface ‘‘𝑆1’’ for infected hepatocytes and ‘‘𝑆2’’ for virions as follows:
{

𝑆1 = 𝑎1 𝑒1 + 𝑎2 𝑒2 (4)
3

𝑆2 = 𝑎3 𝑒3 + 𝑎4 𝑒4
Fig. 2. Phase plane diagram of SMC.

where 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are the coefficients that control the convergence
rate to the sliding surface. Error 𝑒2 is the integral of error 𝑒1 which is
the difference between infected hepatocytes and their reference value
(𝑒1 = 𝑥2 − 𝑥2𝑟𝑒𝑓 ). Error 𝑒3 is the difference between the virion’s state
variable and its reference value (𝑒3 = 𝑥3−𝑥3𝑟𝑒𝑓 ) while 𝑒4 is the integral
of error 𝑒3.

Taking the time derivative of sliding surfaces given by Eq. (4) and
putting 𝑆̇1 and 𝑆̇2 from Eq. (2) for 𝑖 = 1 and 2, we get control input
laws for infected hepatocytes and virions. ISMC consists of two control
input laws 𝑢𝑛𝑜𝑚 and 𝑢𝑠𝑤. Solving for control input 𝑢1(𝑡) we get:

𝑢𝑛𝑜𝑚 = 1
𝑎1𝛽 𝑥3 𝑥1

[

𝑎1 𝛽 𝑥3 𝑥1 + 𝑎1 𝑟𝑖 𝑥2
(

1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

)

−𝑎1 𝛿 𝑥2 − 𝑎1 𝑥̇2𝑟𝑒𝑓 + 𝑎2 𝑒1

]

𝑢𝑠𝑤 = 1
𝑎1𝛽 𝑥3 𝑥1

[

𝐾1 |𝑆1|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆1
𝜙1

)
]

(5)

By combining nominal and switching SMC control law from (5) and
solving for the control input 𝑢1(𝑡):

𝑢1(𝑡) =
1

𝑎1𝛽 𝑥3 𝑥1

[

𝑎1 𝛽 𝑥3 𝑥1 + 𝐾1 |𝑆1|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆1
𝜙1

) + 𝑎1 𝑟𝑖 𝑥2

(

1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

)

− 𝑎1 𝜎 𝑥2 − 𝑎1 𝑥̇2𝑟𝑒𝑓 + 𝑎2 𝑒1

]

(6)

Similar is the case for the control input 𝑢2(𝑡) for the reduction of virions,
the sliding manifold can be taken as:

𝑢2(𝑡) =
(

1
𝑎3 𝑝 𝑥2

) [

𝑎3 𝑝 𝑥2 + 𝐾2 |𝑆2|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆2
𝜙2

)

− 𝑎3 𝑐 𝑥3 − 𝑎3 𝑥̇3𝑟𝑒𝑓 + 𝑎4 𝑒3

] (7)

where

𝑢𝑛𝑜𝑚 = 1
𝑎3 𝑝 𝑥2

[

𝑎3 𝑝 𝑥2 − 𝑎3 𝑐 𝑥3 − 𝑎3 𝑥̇3𝑟𝑒𝑓 + 𝑎4 𝑒3

]

𝑢𝑠𝑤 = 1
𝑎3 𝑝 𝑥2

[

𝐾2 |𝑆2|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆2
𝜙2

)
] (8)

The control input 𝑢2(𝑡) given by Eq. (7) is the required control input for
virions to track its reference value.

Theorem 1. Considering the system in (1), the sliding surface (𝑆1,2) under
the assumptions given in Section 3.1, the designed proposed controller will
stabilize the system provided that the condition in (2) holds. Further, in
the presence of external disturbance 𝑑(𝑡), the designed controller ensures
robustness.
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Proof. For stability analysis of sliding surface 𝑆1,2, we consider the
following Lyapunov candidate function as:

𝑉1,2 =
1
2
𝑆2
1 + 1

2
𝑆2
2 (9)

Time derivative of Eq. (9) and putting the value of 𝑆̇1 and 𝑆̇2 from
q. (2) for 𝑖 = 1, 2, we get

̇1,2 = 𝑆1 𝑆̇1 + 𝑆2 𝑆̇2 = 𝑆1

(

−𝐾1 |𝑆1|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆1
𝜙1

)
)

+

𝑆2

(

−𝐾2 |𝑆2|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆2
𝜙2

)
) (10)

Eq. (57) for i= 1 and 2 from Eq. (33) becomes:

𝑉̇1,2 = −𝐾1 |𝑆1|
𝛼𝜙1

|

|

|

|

|

𝑆1
𝜙1

|

|

|

|

|

−𝐾2 |𝑆2|
𝛼 𝜙2

|

|

|

|

|

𝑆2
𝜙2

|

|

|

|

|

= −𝐾1 |𝑆1|
𝛼𝜙1

|𝑆1|

𝜙1
−𝐾2 |𝑆2|

𝛼 𝜙2
|𝑆2|

𝜙2

(11)

|𝜙1| = 𝜙1, |𝜙2| = 𝜙 and 𝜙1,2 > 0, we have:

𝑉̇1,2 = −𝐾1|𝑆1|
𝛼1+1 −𝐾2|𝑆2|

𝛼2+1 (12)

q. (12) shows that 𝑉̇1,2 < 0, thus making the system stable by using
yapunov theory.

.3. Double integral sliding mode controller

The second integral has been added to the sliding surface to com-
ensate remaining SSE and mitigate the chattering. Consider the fol-
owing sliding surfaces:

𝑆3 = 𝑎5 𝑒1 + 𝑎6 𝑒2 + 𝑎7 𝑒5

4 = 𝑎8 𝑒3 + 𝑎9 𝑒4 + 𝑎10 𝑒6
(13)

here 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9 and 𝑎10 are coefficients of the sliding surface. 𝑒2
s the integral error of 𝑒1. 𝑒5 is the double integral error of the infected

hepatocytes state error 𝑒1. 𝑒3 is the error between the virions and their
reference value 𝑥3𝑟𝑒𝑓 , 𝑒4 is its integral and 𝑒6 is its double integral.

In mathematical form, errors are expressed as:

𝑒1 = 𝑥2 − 𝑥2𝑟𝑒𝑓 (14)

𝑒2 = ∫
(

𝑥2 − 𝑥2𝑟𝑒𝑓
)

𝑑𝑡 (15)

𝑒5 = ∫

{

∫
(

𝑥2 − 𝑥2𝑟𝑒𝑓
)

𝑑𝑡
}

𝑑𝑡 (16)

Now time derivative of the sliding surface 𝑆𝑖 for 𝑖 = 3, 4 to get the
control inputs for infected hepatocytes and virions. Solving for the
control input 𝑢1, we get:

𝑢1(𝑡) =
( 1
𝑎5 𝛽 𝑥3 𝑥1

)

[

𝑎5 𝛽𝑥3 𝑥1 + 𝐾3 |𝑆3|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆3
𝜙3

)

+ 𝑎5 𝑟𝑖 𝑥2
(

1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

)

− 𝑎5 𝛿 𝑥2 − 𝑎5 𝑥̇2𝑟𝑒𝑓 +

𝑎6 𝑒1 + 𝑎7 𝑒2

]

(17)

Computing for control input 𝑢2(𝑡) used for the blocking and reduction
of virions from HCV dynamics system will be:

𝑢2(𝑡) =
( 1
𝑎8 𝑝 𝑥2

)

[

𝑎8 𝑝 𝑥2 + 𝐾4 |𝑆4|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆4
𝜙4

) − 𝑎8 𝑐 𝑥3

− 𝑎8 𝑥̇2𝑟𝑒𝑓 + 𝑎9 𝑒4 + 𝑎10 𝑒6

] (18)

Theorem 2. Considering the system in (1), the sliding surface (𝑆3,4) under
the assumptions given in Section 3.1, the designed proposed controller will
stabilize the system provided that the condition in (2) holds. Further, in
the presence of external disturbance 𝑑(𝑡), the designed controller ensures
robustness.
4

Proof. For stability analysis of sliding surface 𝑆3,4, we consider the
following Lyapunov candidate function as:

𝑉3,4 =
1
2
𝑆2
3 + 1

2
𝑆2
4 (19)

By taking time derivative of Eq. (19) and substituting 𝑆̇3 and 𝑆̇4 from
q. (2) for 𝑖 = 3, 4 yields:

̇3,4 = 𝑆3 𝑆̇3 + 𝑆4 𝑆̇4 = 𝑆3

(

−𝐾3 |𝑆3|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆3
𝜙3

)
)

+

𝑆4

(

−𝐾4 |𝑆4|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆4
𝜙4

)
) (20)

Eq. (20) for i = 3 and 4 becomes:

̇3,4 = −𝐾3 |𝑆3|
𝛼𝜙3

|

|

|

|

|

𝑆3
𝜙3

|

|

|

|

|

−𝐾4 |𝑆4|
𝛼 𝜙4

|

|

|

|

|

𝑆4
𝜙4

|

|

|

|

|

= −𝐾3 |𝑆3|
𝛼𝜙3

|𝑆3|

𝜙3
−𝐾4 |𝑆4|

𝛼 𝜙4
|𝑆4|

𝜙4

(21)

|𝜙3| = 𝜙3, |𝜙4| = 𝜙 and 𝜙3,4 > 0, we have:

𝑉̇3,4 = −𝐾3|𝑆3|
𝛼3+1 −𝐾4|𝑆4|

𝛼4+1 (22)

s the derivative of Lyapunov candidate function 𝑉̇3,4 given by Eq. (22)
s negative definite, the system is stable.

.4. Integral terminal sliding mode controller (ITSMC)

In order to eliminate the singularity problem and to achieve high
tate accuracy tracking, Integral terminal SMC has been proposed.
efining the ITSMC sliding surface as follows:

5 = 𝑒1 + 𝜅5

[

∫

𝑡

0
𝑒1 𝑑𝑡

]𝜆5

(23)

here 𝜅5 is design parameter of sliding manifold, 𝜆5 is positive number
such that 1 < 𝜆5 < 2. 𝑒1 is the tracking error variable between infected
epatocytes. Time derivative of the sliding surface and Substituting 𝑆̇5
nd solving for the control input 𝑢1(𝑡), we get

1(𝑡) =
( 1
𝛽 𝑥3 𝑥1

)

[

𝐾5 |𝑆5|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆5
𝜙5

) + 𝛽 𝑥3 𝑥1+

𝑟𝑖(1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

) − 𝛿 𝑥2 − 𝑥̇2𝑟𝑒𝑓+

𝜅5 (𝜆5) 𝑒1
[

∫

𝑡

0
𝑒1 𝑑𝑡

]𝜆5−1
]

(24)

Similarly for the state variable 𝑥3, the sliding surface 𝑆6 is taken as:

𝑆6 = 𝑒2 + 𝜅6

[

∫

𝑡

0
𝑒8 𝑑𝑡

]𝜆6

(25)

where 𝑒2 is the tracking error variable between the virions and their
reference value. Time derivative of Eq. (25) and solving for control
input 𝑢2(𝑡), we get

𝑢2(𝑡) =
( 1
𝑝 𝑥2

)

[

−𝐾6 |𝑆6|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆6
𝜙6

) + 𝑝 𝑥2 − 𝑐 𝑥3 − 𝑥̇3𝑟𝑒𝑓+

𝜅6 (𝜆6) 𝑒2
[

∫

𝑡

0
𝑒2 𝑑𝑡

]𝜆6−1
] (26)

Theorem 3. Considering the system in (1), the sliding surface (𝑆3,4) under
the assumptions given in Section 3.1, the designed proposed controller will
stabilize the system provided that the condition 𝑆̇5 = −𝐾 |𝑆5|

𝛼 𝑠𝑖𝑔𝑛 ( 𝑆5
𝜙5

)

and 𝑆̇6 = −𝐾 |𝑆6|
𝛼 𝑠𝑖𝑔𝑛 ( 𝑆6

𝜙6
) holds. Further, in the presence of external

disturbance 𝑑(𝑡), the designed controller ensures robustness.
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Proof. For the stability of sliding manifolds 𝑆5 and 𝑆6, taking Lya-
unov candidate function as:

5,6 =
1
2
𝑆2
5 + 1

2
𝑆2
6 (27)

By taking time derivative of Eq. (27) yields:

𝑉̇5,6 = 𝑆5𝑆̇5 + 𝑆6𝑆̇6 (28)

Putting 𝑆̇5 and 𝑆̇6 in Eq. (28) gives:

̇5,6 = −𝑆5

(

𝐾5 |𝑆5|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆5
𝜙5

)
)

−

𝑆6

(

𝐾6 |𝑆6|
𝛼 𝑠𝑖𝑔𝑛 (

𝑆6
𝜙6

)
) (29)

As the derivative of Lyapunov candidate function 𝑉̇5,6 by Eq. (41) is
negative definite for 𝜅5 and 𝜅6 greater than zero, the system is stable.

.5. Fractional order terminal sliding mode controller (FOTSMC)

The main purpose of this study is to design a stable control strategy
or HCV under IFN and Ribavirin therapy based on Fractional Order
ontrol (FOC). FOC has been implemented for the HCV system with
combination of Terminal Sliding mode control (TSMC). The concept

f such a method is to develop a sliding surface which is the fusion of
OC with TSMC characteristics. The main advantage of FOTSMC with
he terminal sliding surface using fractional order derivative calculus
s avoiding singularity issues and faster convergence speed compared
o conventional ITSMC. FOTSMC control laws are developed to ensure
he finite time convergence of HCV system states to their reference level
ased on the Lyapunov stability theorem.

FOTSMC sliding surface is proposed and given by:

7 = 𝑐5−𝛼𝑒1 + 𝑐6𝛼
|𝑒1|

𝛾𝑠𝑔𝑛(𝑒1) (30)

where 𝑐5, 𝑐6 and 𝛾 are positive numbers.  is fractional operator and
efined as:

𝑎D𝛼
𝑡 is fundamental fractional operator defined as:

D𝛼
𝑡 =

⎧

⎪

⎨

⎪

⎩

𝑑𝛼

𝑑𝑡𝛼 R(𝛼) > 0
1, 𝑅(𝛼) = 0
∫ 𝑡
𝑎 (𝑑𝜏)

−𝛼 , 𝑅(𝛼) < 0

(31)

here 𝑅(𝛼) is real set number and 𝛼 represent fractional operator order
32]. The fractional operator is defined by many definitions such as:

efinition 1. Riemann–Liouville fractional integral and derivative 𝛼th
rder of the function 𝑓 (𝑡) w.r.t time is:

D𝛼
𝑡 = 𝑑𝛼

𝑑𝑡𝛼
𝑓 (𝑡) = 1 𝑑𝑚

𝛤 (𝑚 − 𝛼)𝑑 𝑡𝑚 ∫

𝑡

𝛼

𝑓 (𝜏)
(𝑡 − 𝜏)𝛼−𝑚+1

𝑑𝜏 (32)

𝑎D−𝛼
𝑡 = 𝐼𝛼𝑓 (𝑡) = 1

𝛤 (𝛼) ∫

𝑡

𝛼

𝑓 (𝜏)
(𝑡 − 𝜏)1−𝛼

𝑑𝜏 (33)

where ‘‘𝑚’’ is first integer and larger than ‘‘𝑎’’ such as 𝑚−1 < 𝛼 < 𝑚, 𝑡−𝛼
is interval integration.

Definition 2. Caputo fractional integral and derivative 𝛼th order of the
function 𝑓 (𝑡) w.r.t time is [32]:

𝑎D𝛼
𝑡 =

⎧

⎪

⎨

⎪

⎩

1
𝛤 (𝜐−𝛼) ∫ 𝑡

𝛼
𝑓 𝜐(𝜏)

(𝑡−𝜏)𝛼−𝜐+1 𝑑𝜏

(𝜐 − 1 ≤ 𝛼 < 𝜐)
𝑑𝑚

𝑑𝑡𝑛 𝑓 (𝑡)(𝛼 = 𝜐)

(34)

efinition 3. Order 𝛼 GL definition is defined as [32]:

𝐺𝐿D𝛼
𝑡 𝑓 (𝑡) = lim

𝑡𝑠→0

1
𝑡𝑠𝛼

(𝑡−𝛼)
ℎ
∑

(−1)𝑗
(

𝛼
𝑗

)

𝑓 (𝑡 − 𝑗ℎ) (35)
5

𝑗=0
(

𝛼
𝑗

)

=
𝛤 (𝛼 + 1)

𝛤 (𝑗 + 1)𝛤 (𝛼 − 𝑗 + 1)
(36)

Where the time step is represented by 𝑡𝑠 and the gamma function by
𝛤 (.). The stability of non-integer systems has been thoroughly discussed
in the literature [33,34]. The Oustaloup recursive approximation algo-
rithm [35] is used to approximate fractional orders using a classical
integer order transfer function.

𝑒1 is tracking error variable between the infected hepatocytes and
heir reference value given as:

1 = 𝑥2 − 𝑥2𝑟𝑒𝑓 (37)

The time derivative of the sliding manifold is

𝑆̇7 = 𝑐51−𝛼𝑒1 + 𝑐6𝛾𝛼 1
|𝑒1|

𝛾𝑠𝑔𝑛(𝑒1)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

̇ 7 = 𝑐51−𝛼𝑒1 + 𝑐6𝛾𝛼
|𝑒1|

𝛾−1𝑒̇1 (38)

pplying −𝛼 to both side of Eq. (38), yields:
1−𝛼𝑆̇7 = 𝑐51−2𝛼𝑒1 + 𝑐6𝛾|𝑒1|

𝛾−1𝑒̇1 (39)
1−𝛼 represent fractional derivative term. For simplicity, we can rep-

esent it as 𝛼̂ . Convenient form of Eq. (39) is written as:
𝛼̂𝑆̇7 = 𝑐51−2𝛼𝑒1 + 𝑐6𝛾|𝑒1|

𝛾−1𝑒̇1 (40)

aking time derivative of Eq. (37) and putting it in Eq. (40), we have:
𝛼̂𝑆̇7 = 𝑐51−2𝛼𝑒1 + 𝑐6𝛾|𝑒1|

𝛾−1

(1 − 𝑢1)𝛽 𝑥3 𝑥1 + 𝑟𝑖 𝑥2 (1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

) − 𝛿 𝑥2 − 𝑥̇2𝑟𝑒𝑓

)

(41)

Solving Eq. (41) for control input 𝑢1(𝑡), we get:

𝑢1(𝑡) = 𝑢𝑠𝑤 + 𝑢𝑛𝑜𝑚 (42)

𝑢𝑛𝑜𝑟𝑚 = 1
𝛽 𝑥3 𝑥1

[

𝑟𝑖 𝑥2 (1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

) − 𝛿 𝑥2 − 𝑥̇2𝑟𝑒𝑓

−
𝑐5||𝑒1||

1−𝛾

𝛾𝑐6
𝐷1−2𝛼(𝑒1) + 𝛽 𝑥3 𝑥1

]

(43)

𝑠𝑤 = 1
𝛽 𝑥3 𝑥1

|𝑒𝑠|
1−𝛾

[

−
𝑘𝑟3
𝛾𝑐6

𝑠𝑔𝑛(𝑆7)
]

(44)

Similarly for the state variable 𝑥3, the sliding surface 𝑆8 is taken as:

𝑆8 = 𝑐7−𝛼𝑒2 + 𝑐8𝛼
|𝑒2|

𝛾𝑠𝑔𝑛(𝑒2) (45)

where 𝑒2 is the tracking error variable between the virions and their
reference value expressed as:

𝑒2 = 𝑥3 − 𝑥3𝑟𝑒𝑓 (46)

Taking time derivative of the surface given in Eq. (45) and putting the
values of 𝑒̇2, one gets:

𝛼̂𝑆̇8 = 𝑐71−2𝛼𝑒2 + 𝑐8𝛾|𝑒2|
𝛾−1

[

(1 − 𝑢2) 𝑝 𝑥2−

𝑐 𝑥3 − 𝑥̇3𝑟𝑒𝑓

] (47)

Solving the above equation for 𝑢2(𝑡) one gets:

𝑢2(𝑡) = 𝑢𝑛𝑜𝑟𝑚(𝑡) + 𝑢𝑠𝑤(𝑡) (48)

𝑢𝑛𝑜𝑟𝑚(𝑡) = 1 + 1
𝑝 𝑥2

[

𝑝 𝑥2 − 𝑐 𝑥3 − 𝑥̇3𝑟𝑒𝑓 −
𝑐7|𝑒10|

1−𝛾

𝛾𝑐8
𝐷1−2𝛼(𝑒2)

]

(49)

𝑠𝑤 = 1
|𝑒10|

1−𝛾 −
𝑘𝑟4 (𝑠𝑔𝑛(𝑆7)) (50)
𝑝 𝑥2 𝛾𝑐7
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The closed-loop stability of the proposed control paradigm is achieve
using the Lyapunov stability theorem selected as 𝑉𝑖 =

1
2𝑆

2
𝑖 . A fractional

operator 𝐷𝛼̄ is applied to the Lyapunov function 𝑉𝑖 resulting in the
following expression.

𝐷𝛼̄𝑉1 ≤ 𝑆𝑖𝐷
𝛼̄𝑆𝑖 +

∞
∑

𝑗=1

 (1 + 𝛼̄)
 (1 + 𝛼̄ − 𝑗)(1 + j)

𝐷j𝑆𝑖𝐷
𝛼̄−𝑗𝑆𝑖 (51)

Consider the following inequality:
∞
∑

𝑗=1

𝑇 (1 + 𝛼̄)
 (1 + 𝛼̄ − 𝑗)(1 + j)

𝐷i𝑆𝑖𝐷𝛼̄−𝑗𝑆𝑖 ≤ 𝜌 |
|

𝑆𝑖
|

|

(52)

urther simplification
𝛼̄𝑉𝑖 ≤ 𝑆𝑖𝐷

𝛼̄𝑆𝑖 + 𝜆3 ||𝑆𝑖
|

|

(53)

𝛼̄𝑉1 ≤
{

𝑐51−2𝛼𝑒1 + 𝑐6𝛾|𝑒1|
𝛾−1

(

(1 − 𝑢1)𝛽 𝑥3 𝑥1 + 𝑟𝑖 𝑥2 (1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

) − 𝛿 𝑥2 − 𝑥̇2𝑟𝑒𝑓

)}

+ 𝜆31 ||𝑆7
|

|

(54)

𝛼̄𝑉2 ≤
{

𝑐71−2𝛼𝑒2 + 𝑐8𝛾|𝑒10|
𝛾−1

(

(1 − 𝑢2) 𝑝 𝑥2 − 𝑐 𝑥3 − 𝑥̇3𝑟𝑒𝑓

)}

+ 𝜆32 ||𝑆8
|

|

(55)

inally, the simplification, obtain:
𝛼̄𝑉𝑖 ≤ −𝜆𝑖|𝑆𝑖| + 𝜌|𝑆𝑖| (56)

By choosing 𝜆𝑖, such that 𝜆𝑖 |𝑆𝑖| > 𝜌|𝑆𝑖|, then the expression 𝐷𝛼̄𝑉𝑖 is
always negative.

Theorem 4. Using Lyapunov stability theorem, consider fractional order
sliding surfaces (30) and (45), it guarantees that fractional order sliding
surface is stable and converge to zero.

𝑆7 + 𝑆8 =
[

𝑐5−𝛼𝑒1 + 𝑐6𝛼
|𝑒1|

𝛾𝑠𝑔𝑛(𝑒1)
]

+
[

𝑐7−𝛼𝑒2 + 𝑐8𝛼
|𝑒2|

𝛾𝑠𝑔𝑛(𝑒2)
]

= 0
(57)

Consider the fractional error dynamics as:

𝑎D𝛼
𝑡 𝑒1 + 𝑎D𝛼

𝑡 𝑒2 = −𝜆1𝑒1 − 𝜆2𝑒2 0 < 𝛼 < 1. (58)

Considering the Lyapunov function for both errors, as follows:

𝑉𝑒1 ,𝑒2 = 1
2
𝑒21 +

1
2
𝑒22 (59)

Taking fractional derivatives on both sides, one has:

𝑎D𝛼
𝑡 𝑉𝑒1 ,𝑒2 = 1

2 𝑎D𝛼
𝑡 𝑒

2
1 +

1
2 𝑎D𝛼

𝑡 𝑒
2
2

𝑒1 𝑎D𝛼
𝑡 𝑒1 + 𝑒2 𝑎D𝛼

𝑡 𝑒2 = −𝜆1 𝑒21 − 𝜆2 𝑒
2
2.

(60)

t implies that the stability of the system is guaranteed.

. Simulation results and comparison

In this section, the performance of the proposed control input laws
qs. (6) and (7) for ISMC, by Eqs. (17) and (18) for DISMC, by
qs. (24) and (26) for ITSMC, by Eqs. (42) and (48) for FOTSMC has
een presented through the simulation results using MATLAB/Simulink
eing simulated for the time period of 50 days. The initial value of the
nfected hepatocytes is recorded as 50,000 IU/L. The initial value of
he uninfected hepatocytes is recorded as 555 IU/L while for virions it
s 20,000 IU/L. The Polymerase Chain Reaction (PCR) calculates these
alues. HCV RNA viruses are found by the HCV RNA PCR blood test.
n order to reach the accepted condition at the equilibrium point of
= [8000000, 0, 0]𝑇 , the control was applied for regulating virions,

nfected hepatocytes, and uninfected hepatocytes. The initial condition
6

0

f the error dynamics influences the reachability time of the states
o a desired reference level. By setting a high value as the initial
ondition for the double integral’s reachability time, the time required
an be significantly reduced. However, this approach initiates the
hemotherapy process with a high-dose injection, which is not ideal. In
he proposed control strategy, a gradual initiation of the chemotherapy
ose has been implemented by setting the initial condition of error
ynamics to zero. The initial condition for the error dynamics in each
roposed controller’s case is 𝑒𝑖 = 0. The required reference values for
irions, infected hepatocytes, and uninfected hepatocytes were set at
3𝑟𝑒𝑓 = 0, 𝑥2𝑟𝑒𝑓 = 0, 𝑇𝑚𝑎𝑥 = 8,000,000, respectively. HCV dynamical
odel used all parametric values from [36] which are enlisted here.
esign parameters for the proposed controllers are obtained by trial
nd error method. Appropriate desired reference value can be achieved
y changing the gain value. Nonlinear HCV system parameters and
alues are given as:

• 𝑝 = 20, 𝑐 = 10, 𝛽 = 10−7, 𝑠 = 0.0024 ∗ 10−7.

• 𝑟𝑇 = 2, 𝑟𝑖 = 1, 𝑑𝑇 = 0.003, 𝛿 = 0.2.

or ISMC, gains parameters values are defined as:

• 𝑎1 = 9780, 𝑎2 = 4, 𝑎3= 1, 𝑎4 = 1.

• 𝐾1 = 6300, 𝐾2 = 35,000

• 𝛼 = 0.5, 𝜙1 = 𝜙2 = 0.5

DISMC gain parameters values are as follows:

• 𝑎5 = 9000, 𝑎6 = 1, 𝑎7 = 12,590,000, 𝑎8 = 7500, 𝑎9 = 1, 𝑎10 =
90,000

• 𝐾3 = 65,000, 𝐾4 = 65,000

• 𝛼 = 0.5, 𝜙3 = 𝜙4 = 0.5

ITSMC gain parameter values are as follows:

• 𝜆5 = 1.5, 𝜆6 = 1.5

• 𝜅5 = 6500, 𝜅6 = 90,000

• 𝛼 = 0.5, 𝜙5 = 𝜙6 = 0.5

imilarly, for FOTSMC:

• 𝑐5 = 0.15, 𝑐6 = 0.01, 𝑐7 = 0.20, 𝑐8 = 0.0010

• 𝐾𝑟3 = 0.050, 𝐾𝑟4 = 0.0001

• 𝛾 = 1.5, 𝛼 = 0.5, 𝜙3 = 𝜙4 = 0.5

he uncontrolled behavior (without drug usage) of the system is shown
y Fig. 3. In the disease’s early stage, infected hepatocytes and virions
row rapidly due to which uninfected hepatocytes decrease. However,
sing the proposed controllers ISMC, DISMC, ITSMC and FOTSMC
or the drug injection, the concentration of the virions and infected
epatocytes decreases and is tracked to its reference value.

After exposure to the virus during the first phase of the disease, the
rug efficacy 𝑢1 must be at the highest level for a shorter time period on
he basis of control inputs. Later, when a certain level for the second
hase is achieved, the drug efficacy decreases and it remains at the
owest level for the rest of the treatment period. Moreover, the drug
fficacy 𝑢2 remains lower in the first phase and it reaches a higher level
n the second phase gradually. To keep the drug amount within safe
imits, the maximum value for the drug efficacy 𝑢1 and 𝑢2 is set to be

.96.
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Fig. 3. Uncontrolled response of all states of HCV.

Fig. 4. Behavior of uninfected hepatocytes.

This section consists of four subsections. The first subsection shows
he response of Uninfected Hepatocytes for drug injection with pro-
osed controllers. Similarly, the second and third subsection shows the
ehavior of Infected Hepatocytes and Virions respectively. In the fourth
ubsection, all the proposed controllers have been compared with each
ther on the basis of transient response, SSE, undershoot/overshoot,
ipples and chattering in their performances for the control and reduc-
ion of HCV.

.1. Response of Uninfected Hepatocytes

Here the Response of Uninfected Hepatocytes state of HCV with
ll proposed controllers have been made. Fig. 4 shows the behavior
f uninfected hepatocytes with drug injection. Uninfected hepatocytes
how a remarkable increase and achieve 𝑇𝑚𝑎𝑥 which is the maximum
oncentration of uninfected hepatocytes in the liver and its value is
,000,000 IU/L. Uninfected Hepatocytes transient time takes the same
ime with ISMC and FOTSMC to 𝑇𝑚𝑎𝑥. SSE has been observed in the
ninfected hepatocytes with the ISMC. FOTSMC shows no SEE in
chieving 𝑇𝑚𝑎𝑥 limit. Using FOTSMC, uninfected hepatocytes achieve
𝑚𝑎𝑥 rapidly with no SSE than that using DISMC. ITSMC shows good
racking of uninfected hepatocytes to 𝑇𝑚𝑎𝑥 with better transient time
nd no SSE. The control inputs 𝑢1 and 𝑢2 for ISMC has been shown in
ig. 5.

.2. Response of Infected Hepatocytes

Fig. 6 shows the behavior of the infected hepatocytes under the pro-
osed controllers which shows that their tracking time to the reference
alues is very fast with ISMC as compared to that of FOTSMC. However,
SMC observes huge SSE in tracking the reference value. The infected
7

Fig. 5. (a) Control input 𝑢1 for ISMC (b) Control input 𝑢2 for ISMC.

Fig. 6. Behavior of infected hepatocytes.

hepatocytes track the reference value in almost 18 days having zero SSE
by using FOTSMC (as clear from the zoomed portion of the graph).

The tracking behavior of the infected hepatocytes is slightly better
with DISMC than that with FOTSMC. Using antiviral drugs with DISMC,
infected hepatocytes are tracked to their reference level in 17 days
while they take 18 days with FOTSMC. But again DISMC shows a
small SSE while it tracked nicely with FOTSMC having no SSE to its
reference level. ITSMC shows tracking to reference level having SSE as
well. FOTSMC shows better behavior for tracking infected hepatocytes.
The control inputs 𝑢1 and 𝑢2 for DISMC has been shown in Fig. 7. The
maximum starting value of the interferon for the adults infected with
HCV genotype 1 (weight > 75 kg) is 180 micrograms (mcg/mL). With
interferon, the maximum dose for the ribavirin given to the patient is
1000–1200 mg/d.

4.3. Response of virions

The behavior of the virions of the HCV is shown in Fig. 8. They
approach the reference value very fast with the ISMC as compared to
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Fig. 7. (a) DISMC control input 𝑢1 (b) DISMC control input 𝑢2.

Fig. 8. Behavior of Virions.

hat of FOTSMC. However, the ISMC gives a large SSE of about 45
epatocytes while tracking the reference value. The tracking time of
irions with the FOTSMC is 10 days of the treatment using peg-IFN-𝛼
s 𝑢1 and ribavirin as 𝑢2 while virions track to zero with no SSE.

Fig. 8 shows that the virions track to the reference faster by using
TSMC but with SSE and chattering. FOTSMC again shows no SSE in
racking the reference of virions and completely eliminates the virions.
he control inputs 𝑢1 and 𝑢2 for FOTSMC has been shown in Fig. 9.

.4. Discussion

The performance of ISMC, DISMC, ITSMC and FOTSMC have been
ompared with each other. The comparison of proposed controllers
s based on controller characteristics such as overshoot, undershoot,
SE, transient, settling time, and chattering while converging to the
eference level and the settling time. Uninfected hepatocytes converge
o the maximum level 𝑇𝑚𝑎𝑥 in just 5 days. Settling time is about 10
ays with no SSE. Tracking of infected hepatocytes and virions to their
8

eference level having no SSE is done in 10 days with FOTSMC. h
Fig. 9. (a) FOTSMC control input 𝑢1 (b) FOTSMC control input 𝑢2.

Table 1
Response of proposed controllers.
Uninfected hepatocytes

Response ISMC DISMC FOTSMC ITSMC

SSE (cells) 100 0.4 0 0
Overshoot/Undershoot 0 0 0 0
Settling time (day) 8 21 10 8
Converging time (day) 5 5.1 5 5

Infected hepatocytes

Response ISMC DISMC FOTSMC ITSMC

SSE (cells) 0.6 6 0 60
Overshoot/Undershoot 0 0 0 0
Settling time (days) 0.8 9 9 40
Converging time (days) 1 10 10 10

Virions

Response ISMC DISMC FOTSMC ITSMC

SSE (cells) 45 6 0 50
Overshoot/Undershoot 0 0 0 0
Settling time (days) 0.3 8 9 45
Converging time (days) 0.5 9 10 0.3

SSE has been observed in all the states of the HCV using DISMC.
It is 0.4 hepatocytes below 𝑇𝑚𝑎𝑥 level, 0.4 and 6 hepatocytes below
the reference level of infected hepatocytes and virions respectively. The
transient time for uninfected hepatocytes with DISMC is 5.1 days while
settling time is 21 days. The convergence time for virions is 9 days and
for infected hepatocytes, it is 10 days.

ISMC provides better convergence behavior than all the other pro-
posed controllers but observes not negligible SEE. It takes 5 days to
approach the 𝑇𝑚𝑎𝑥 and the settling time is 8 days for uninfected hepa-
ocytes, 1 day for the infected hepatocytes and half a day for virions.
ut it gives an SSE of 0.1 IU/L, 0.6 IU/L and 45 IU/L hepatocytes in
ninfected hepatocytes, infected hepatocytes and virions respectively.

With ITSMC, the transient time and settling time of uninfected
epatocytes maximum level 𝑇𝑚𝑎𝑥 is 4 and 8 days respectively with no
SE. The infected hepatocytes and virions track the reference in almost
alf day with SSE and chattering with ITSMC.
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In ISMC, the integral term in the control law is used to mitigate the
SSE. However, SSE values of Uninfected Hepatocytes, Infected Hepato-
cytes, and virions respectively as 100, 0.6, and 45 cells indicate that
ISMC helps in reducing the error but does not entirely eliminate and
thus, the residual steady-state error persists. The DISMC extends the
integral action to double integral, thereby enhancing the controller’s
ability to eliminate SSE as shown in Table 1. DISMC signifies a sig-
nificant reduction in SSE as compared to ISMC, yet a finite residual
error remains in all states. The most notable result is the elimination
of SSE in all states employing FOTSMC and this is due to the use of
fractional calculus which allows for a more accurate representation of
system dynamics. Fractional order systems inherently exhibit smoother
transitions between states compared to their integer-order counterparts,
and this can contribute to a smooth transition, continuous control
signals, and improved accuracy. The zero SSE showed the efficacy of
fractional order dynamics in achieving precise tracking without any
persistent deviation from the desired reference state.

ISMC provides relatively fast convergence for infected Hepatocytes
and virions but may exhibit delays in settling time for Uninfected
Hepatocytes. ITSMC excels in achieving rapid convergence for the
virions, showing the effectiveness of the terminal condition in control-
ling this specific state. FOTSMC, while maintaining a comparable set-
tling time for Uninfected Hepatocytes, demonstrates faster convergence
for Infected Hepatocytes and the virions, emphasizing the benefits of
fractional order dynamics. So, FOTMSC performs better than other
proposed controllers in terms of SSE, overshoot, transient, and settling
times. It gives better performance in blocking and tracking of infected
hepatocytes and virions.

5. Proof of robustness

External disturbance, initial conditions, and parametric variation
have been simulated to test the robustness of the proposed controllers
ISMC, DISMC, ITSMC and FOTSMC. The results are presented below:

5.1. Effect of external disturbance/noise

White noise having a magnitude of 10% has been introduced into
output values in order to evaluate the efficacy of the proposed treat-
ment strategy under measurement noise. Eq. (1) has been presented in
the presence of white noise, given by;

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑥1
𝑑𝑡

= 𝑠 + 𝑟𝑇 𝑥1(1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

) − 𝑑𝑇 𝑥1 − (1 − 𝑢1)𝛽𝑥3𝑥1 + 𝑣𝑘

𝑑𝑥2
𝑑𝑡

= (1 − 𝑢1)𝛽 𝑥3 𝑥1 + 𝑟𝑖 𝑥2 (1 −
𝑥1 + 𝑥2
𝑇𝑚𝑎𝑥

) − 𝛿 𝑥2 + 𝑣𝑘

𝑑𝑥3
𝑑𝑡

= (1 − 𝑢2) 𝑝 𝑥2 − 𝑐 𝑥3 + 𝑣𝑘

(61)

The comparative analysis of all proposed nonlinear controllers in the
presence of noise has been shown in Fig. 10 for uninfected hepatocytes,
Fig. 12 and Fig. 11 for virions and infected hepatocytes respectively.
ITSMC and FOTSMC can withstand such a level of noise and converge
all states to their reference values with acceptable performance. Only
the ISMC displays a very noisy output. FOTSMC controller is the best
due to its fast convergence with reduced SSE and chattering among
all the proposed controllers. The main reason behind FOTSMC exhibits
improved robustness to uncertainties and disturbances. This enhanced
robustness helps maintain stability without the need for aggressive
control actions that contribute to chattering and SSE.

5.2. Effect of different initial conditions

Figs. 13, 14 and 15 show the behavior of uninfected hepatocytes,
infected hepatocytes and virions with different initial conditions us-
ing FOTSMC. Using the values of gains, FOTSMC performs better for
tracking all the states.
9

a

Fig. 10. Behavior of uninfected hepatocytes in the presence of noise.

Fig. 11. Behavior of infected hepatocytes in the presence of noise.

Fig. 12. Behavior of virions in presence of noise.

.3. Effect of change in parametric value

For the case of FOTSMC, the value of proliferation rate for the
nfected hepatocytes represented by 𝑟𝑖 is increased by 20% and the
ehavior is shown in Fig. 16. Even with this rise, FOTSMC is capable
f achieving the desired reference. Comparing the performance shown
n Fig. 6 and Fig. 16, it is clear that the proposed controller is robust
gainst variations in the model parameters.
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Fig. 13. Different initial conditions uninfected hepatocytes values using FOTSMC.

Fig. 14. Different initial conditions infected hepatocytes values using FOTSMC.

Fig. 15. Different initial conditions virions values using FOTSMC.

. Conclusion

A combination of ribavirin and peg-IFN-𝛼 as control inputs are
used for the suppression of virions and infected hepatocytes are based
on nonlinear controllers such as FOTSMC, ITSMC, ISMC and DISMC.
For blocking and reducing infected hepatocytes and virions to their
desired reference values, control input laws have been formulated. Drug
efficacy limitations have also been considered in it. From the above-
10

mentioned simulation results, it can be observed that the concentration
Fig. 16. Infected hepatocytes with variations in model parameter using FOTSMC.

f infected hepatocytes and virions can achieve their respective ref-
rence values in almost 10 days. Moreover, it is also depicted here
hat virions and infected hepatocytes reduce at a faster rate using a
ombination of ribavirin and antiviral drugs peg-IFN-𝛼. Consequently,
ninfected hepatocytes increase automatically and reach to their max-
mum limit 𝑇𝑚𝑎𝑥. On the basis of undershoots/overshoots, SSE, settling
ime and transient response, all the nonlinear controllers have been
ompared with each other. It has been observed that by adding integral
ction, SSE decreases as can be observed in the case of DISMC. By
dding another integral action, SSE has been eliminated completely as
hown in the case of FOTSMC. FOTSMC was found better than other
roposed controllers and also robust against noise measurement and
odel parameters. To reduce the un-modeled uncertainties, this work
as been further extended by including adaptation.
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