34 research outputs found

    Composition and Self-Adaptation of Service-Based Systems with Feature Models

    Get PDF
    The adoption of mechanisms for reusing software in pervasive systems has not yet become standard practice. This is because the use of pre-existing software requires the selection, composition and adaptation of prefabricated software parts, as well as the management of some complex problems such as guaranteeing high levels of efficiency and safety in critical domains. In addition to the wide variety of services, pervasive systems are composed of many networked heterogeneous devices with embedded software. In this work, we promote the safe reuse of services in service-based systems using two complementary technologies, Service-Oriented Architecture and Software Product Lines. In order to do this, we extend both the service discovery and composition processes defined in the DAMASCo framework, which currently does not deal with the service variability that constitutes pervasive systems. We use feature models to represent the variability and to self-adapt the services during the composition in a safe way taking context changes into consideration. We illustrate our proposal with a case study related to the driving domain of an Intelligent Transportation System, handling the context information of the environment.Work partially supported by the projects TIN2008-05932, TIN2008-01942, TIN2012-35669, TIN2012-34840 and CSD2007-0004 funded by Spanish Ministry of Economy and Competitiveness and FEDER; P09-TIC-05231 and P11-TIC-7659 funded by Andalusian Government; and FP7-317731 funded by EU. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Feature Nets: behavioural modelling of software product lines

    Get PDF
    Software product lines (SPL) are diverse systems that are developed using a dual engineering process: (a)family engineering defines the commonality and variability among all members of the SPL, and (b) application engineering derives specific products based on the common foundation combined with a variable selection of features. The number of derivable products in an SPL can thus be exponential in the number of features. This inherent complexity poses two main challenges when it comes to modelling: Firstly, the formalism used for modelling SPLs needs to be modular and scalable. Secondly, it should ensure that all products behave correctly by providing the ability to analyse and verify complex models efficiently. In this paper we propose to integrate an established modelling formalism (Petri nets) with the domain of software product line engineering. To this end we extend Petri nets to Feature Nets. While Petri nets provide a framework for formally modelling and verifying single software systems, Feature Nets offer the same sort of benefits for software product lines. We show how SPLs can be modelled in an incremental, modular fashion using Feature Nets, provide a Feature Nets variant that supports modelling dynamic SPLs, and propose an analysis method for SPL modelled as Feature Nets. By facilitating the construction of a single model that includes the various behaviours exhibited by the products in an SPL, we make a significant step towards efficient and practical quality assurance methods for software product lines

    Structural investigation of epitaxial LaFeO 3

    Get PDF
    We report on structural domains in LaFeO3 epitaxial thin films on (111) oriented SrTiO3 observed by transmission electron microscopy using low magnification dark field imaging and high resolution transmission electron microscopy techniques. The films were grown by pulsed laser deposition and had a thickness ≈ 20 nm. Three domain orientations are found, in accordance with the orthorhombic structure of LaFeO3. The domains themselves are of irregular shapes, and vary in size from tens to thousands of nm2. Regions of reduced Bragg scattering are observed as straight lines along , hinting at a complex domain structure

    Model-Integrating Software Components

    No full text

    Effect of (1 1 1)-oriented strain on the structure and magnetic properties of La0.7Sr0.3MnO3 thin films.

    No full text
    Using strain, i.e. subtle changes in lattice constant in a thin film induced by the underlying substrate, opens up intriguing new ways to control material properties. We present a study of the effects of strain on structural and ferromagnetic properties of (1 1 1)pc-oriented La0.7Sr0.3MnO3 epitaxial thin films grown on NdGaO3, SrTiO3, and DyScO3 substrates. (The subscript pc denotes the pseudo-cubic symmetry.) The results show that La0.7Sr0.3MnO3 assumes a monoclinic unit cell on NdGaO3 and DyScO3 and a rhombohedral unit cell on SrTiO3. For La0.7Sr0.3MnO3 on NdGaO3 and DyScO3 a uniaxial magnetic anisotropy is found, while La0.7Sr0.3MnO3 on SrTiO3 is magnetically isotropic. The Néel model is used to explain the anisotropy of the thin films on NdGaO3 and SrTiO3, however, for La0.7Sr0.3MnO3 on DyScO3 the effect of octahedral rotations needs to be included through the single ion model. Through examination of the Curie temperature of the strained films we suggest that (1 1 1)-strain has a different effect on the Jahn-Teller splitting of e g and t 2g electron levels than what is seen in (0 0 1)pc-oriented La0.7Sr0.3MnO3 thin films
    corecore