121 research outputs found

    Test Results of DIA: A Real-Time Adaptive Integrity Monitoring Procedure, Used in an Integrated Naviation System

    Get PDF
    A practical method for real-time kinematic position determination and Quality Control (QC) in (integrated) navigation systems is presented as a combination of an extended iterated Kalm an Filter (KF) and the Detection, Identification and Adaptation (DIA) testing procedure for integrity monitoring as developed by the Delft University of Technology. DIA is a real-time recursive QC tool which can be used on multi-sensor integration. There will be no degradation in the number of sensors used by the navigation system, when applying the DIA theory to possible arising errors. Test results are presented of the KF&DIA procedure, which was implemented in the software of the survey vessel HNIMS BUYSKES of the Royal Netherlands Navy. The results of DIA are evaluated by comparing the position quality (precision and reliability) of the KF&DIA procedure with the solution of a standard integrated Least Squares (LS) position with F-test and w-test (DataSnooping, DS) as QC-tools. This analysis shows that the use of a Ka lm a n Filter in combination with DIA gives more precise results (factor = 1½) when compared to the Least Squares method with F-test and w-test. The reliability also increases, especially in cases where multiple errors in observations at one epoch occur. In general the quality of the KF&DIA solution is less influenced by errors than the LS&DS solution

    Area Computation of Polygons

    Get PDF
    Area computation has always been an important task for land surveyors. Until recently the hydrographic surveyor could utilize approximative methods, as results up to 0.1 km2 were sufficient for many purposes. Investigations resulted in computation algorithms, usable on the ellipsoid, with accuracies of the square metre magnitude

    Distributional theory for the DIA method

    Get PDF
    The DIA method for the detection, identification and adaptation of model misspecifications combines estimation with testing. The aim of the present contribution is to introduce a unifying framework for the rigorous capture of this combination. By using a canonical model formulation and a partitioning of misclosure space, we show that the whole estimation–testing scheme can be captured in one single DIA estimator. We study the characteristics of this estimator and discuss some of its distributional properties. With the distribution of the DIA estimator provided, one can then study all the characteristics of the combined estimation and testing scheme, as well as analyse how they propagate into final outcomes. Examples are given, as well as a discussion on how the distributional properties compare with their usage in practice

    A molecular analysis by gene expression profiling reveals Bik/NBK overexpression in sporadic breast tumor samples of Mexican females

    Get PDF
    BACKGROUND: Breast cancer is one of the most frequent causes of death in Mexican women over 35 years of age. At molecular level, changes in many genetic networks have been reported as associated with this neoplasia. To analyze these changes, we determined gene expression profiles of tumors from Mexican women with breast cancer at different stages and compared these with those of normal breast tissue samples. METHODS: (32)P-radiolabeled cDNA was synthesized by reverse transcription of mRNA from fresh sporadic breast tumor biopsies, as well as normal breast tissue. cDNA probes were hybridized to microarrays and expression levels registered using a phosphorimager. Expression levels of some genes were validated by real time RT-PCR and immunohistochemical assays. RESULTS: We identified two subgroups of tumors according to their expression profiles, probably related with cancer progression. Ten genes, unexpressed in normal tissue, were turned on in some tumors. We found consistent high expression of Bik gene in 14/15 tumors with predominant cytoplasmic distribution. CONCLUSION: Recently, the product of the Bik gene has been associated with tumoral reversion in different neoplasic cell lines, and was proposed as therapy to induce apoptosis in cancers, including breast tumors. Even though a relationship among genes, for example those from a particular pathway, can be observed through microarrays, this relationship might not be sufficient to assign a definitive role to Bik in development and progression of the neoplasia. The findings herein reported deserve further investigation

    The General Transcriptional Repressor Tup1 Is Required for Dimorphism and Virulence in a Fungal Plant Pathogen

    Get PDF
    A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens

    Reactive oxygen species and small-conductance calcium-dependent potassium channels are key mediators of inflammation-induced hypotension and shock

    Get PDF
    Septic shock is associated with life-threatening vasodilation and hypotension. To cause vasodilation, vascular endothelium may release nitric oxide (NO), prostacyclin (PGI2), and the elusive endothelium-derived hyperpolarizing factor (EDHF). Although NO is critical in controlling vascular tone, inhibiting NO in septic shock does not improve outcome, on the contrary, precipitating the search for alternative therapeutic targets. Using a hyperacute tumor necrosis factor (TNF)-induced shock model in mice, we found that shock can develop independently of the known vasodilators NO, cGMP, PGI2, or epoxyeicosatrienoic acids. However, the antioxidant tempol efficiently prevented hypotension, bradycardia, hypothermia, and mortality, indicating the decisive involvement of reactive oxygen species (ROS) in these phenomena. Also, in classical TNF or lipopolysaccharide-induced shock models, tempol protected significantly. Experiments with (cell-permeable) superoxide dismutase or catalase, N-acetylcysteine and apocynin suggest that the ROS-dependent shock depends on intracellular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}OH ^\bullet {\hbox{OH}} \end{document} radicals. Potassium channels activated by ATP (KATP) or calcium (KCa) are important mediators of vascular relaxation. While NO and PGI2-induced vasodilation involves KATP and large-conductance BKCa channels, small-conductance SKCa channels mediate vasodilation induced by EDHF. Interestingly, also SKCa inhibition completely prevented the ROS-dependent shock. Our data thus indicate that intracellular \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}OH ^\bullet {\hbox{OH}} \end{document} and SKCa channels represent interesting new therapeutic targets for inflammatory shock. Moreover, they may also explain why antioxidants other than tempol fail to provide survival benefit during shock

    Can oral corticosteroids reduce the severity or duration of an acute cough, and the associated National Health Service and societal costs, in adults presenting to primary care?: study protocol for a randomised controlled trial

    Get PDF
    Background: Acute lower respiratory tract infection (LRTI) is one of the most common conditions managed internationally and is costly to health services and patients. Despite good evidence that antibiotics are not effective for improving the symptoms of uncomplicated LRTI, they are widely prescribed, contributing to antimicrobial resistance. Many of the symptoms observed in LRTI are mediated by inflammatory processes also observed in exacerbations of asthma, for which there is strong evidence of corticosteroid effectiveness. The primary aim of the OSAC (Oral Steroids for Acute Cough) Trial is to determine whether oral prednisolone (40 mg daily for 5 days) can reduce the duration of moderately bad (or worse) cough and the severity of all its associated symptoms on days 2 to 4 post-randomisation (day 1 is trial entry) by at least 20% in adults ≥18 years with acute LRTI presenting to primary care. Methods/design: OSAC is a two-arm, multi-centre, placebo-controlled, randomised superiority trial. The target sample size is 436 patients, which allows for a 20% dropout rate. Patients will be recruited from primary care sites (General Practitioner surgeries) across England and followed up until symptom resolution. The two primary clinical outcomes are the duration of moderately bad (or worse) cough, and the severity of all its associated symptoms on days 2 to 4 post-randomisation. Secondary outcomes include: antibiotic consumption; symptom burden; adverse events; participant satisfaction with treatment and intention to consult for future similar illnesses. A parallel economic evaluation will investigate the cost-effectiveness of the intervention. Discussion: Results from the OSAC trial will increase knowledge regarding the clinical and cost-effectiveness of corticosteroids for LRTI, and will establish the potential of a new treatment option that could substantially improve patient health. We have chosen a relatively high ‘efficacy dose’ as this will enable us to decide on the potential for further research into lower dose oral and/or inhaled corticosteroids. This trial will also contribute to a growing body of research investigating the natural course of this very common illness, as well as the effects of steroids on the undesirable inflammatory symptoms associated with infection. Trial registration: Current Controlled Trials ISRCTN57309858 (31 January 2013)

    Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    Get PDF
    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages
    corecore