95 research outputs found
Recommended from our members
Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tisischemia could contribute to the development of the tissue necrosis seen in BU lesions
A new panel of epitope mapped monoclonal antibodies recognising the prototypical tetraspanin CD81
Background: Tetraspanins are small transmembrane proteins, found in all higher eukaryotes, that compartmentalize cellular membranes through interactions with partner proteins. CD81 is a prototypical tetraspanin and contributes to numerous physiological and pathological processes, including acting as a critical entry receptor for hepatitis C virus (HCV). Antibody engagement of tetraspanins can induce a variety of effects, including actin cytoskeletal rearrangements, activation of MAPK-ERK signaling and cell migration. However, the epitope specificity of most anti-tetraspanin antibodies is not known, limiting mechanistic interpretation of these studies. Methods: We generated a panel of monoclonal antibodies (mAbs) specific for CD81 second extracellular domain (EC2) and performed detailed epitope mapping with a panel of CD81 mutants. All mAbs were screened for their ability to inhibit HCV infection and E2-CD81 association. Nanoscale distribution of cell surface CD81 was investigated by scanning electron microscopy. Results: The antibodies were classified in two epitope groups targeting opposing sides of EC2. We observed a wide range of anti-HCV potencies that were independent of their epitope grouping, but associated with their relative affinity for cell-surface expressed CD81. Scanning electron microscopy identified at least two populations of CD81; monodisperse and higher-order assemblies, consistent with tetraspanin-enriched microdomains. Conclusions: These novel antibodies provide well-characterised tools to investigate CD81 function, including HCV entry, and have the potential to provide insights into tetraspanin biology in general
Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants
RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination
Altered E-cadherin expression and p120 catenin localization in esophageal squamous cell carcinoma
Background: E-cadherin is a well-known tumor suppressor and its dysregulated expression correlates with tumor differentiation, metastasis and survival in esophageal squamous cell carcinoma (ESCC). p120 catenin is an Armadillo protein normally bound to E-cadherin in the cadherin-catenin complex at the adherens junction. Dysregulated expression and mislocalization of p120ctn affect the protective function of the complex. The objective of the present study was to evaluate the clinical significance of E-cadherin and p120ctn expression in ESCC. Methods: Immunohistochemistry was performed to investigate the expression of E-cadherin and p120ctn proteins in 71 patients with ESCC. The relationships between protein expression and clinicopathological characteristics were analyzed. Results: Reduced E-cadherin and p120ctn expressions were observed in 42.3% and 8.5% of ESCC cases, respectively. Reduction of membranous p120ctn was observed in 33.8% of cases. Membranous E-cadherin was preserved when p120ctn co-localized on the membrane of tumor cells (72.3%, P = 0.001). High level E-cadherin expression and membranous p120ctn preservation positively correlated with tumor differentiation (P = 0.001 and P = 0.008, respectively). p120ctn expression was also significantly related to lymph node metastasis (P = 0.003). Heterogeneous expression of both E-cadherin and p120ctn was observed in dysplasia. Conclusions: Altered E-cadherin expression and p120ctn localization were related to tumor differentiation, indicating their important roles in the pathogenesis of ESCC. © 2007 The Society of Surgical Oncology, Inc.postprin
Spatial variations in zooplankton community structure along the Japanese coastline in the Japan Sea: influence of the coastal current
This study evaluates spatial variations in zooplankton
community structure and potential controlling factors along the Japanese
coast under the influence of the coastal branch of the Tsushima Warm Current
(CBTWC). Variations in the density of morphologically identified zooplankton
in the surface layer in May were investigated for a 15-year period. The
density of zooplankton (individuals per cubic meter) varied between sampling
stations, but there was no consistent west–east trend. Instead, there were
different zooplankton community structures in the west and east, with that in
Toyama Bay particularly distinct: Corycaeus affinis and
Calanus sinicus were dominant in the west and Oithona
atlantica was dominant in Toyama Bay. Distance-based redundancy analysis
(db-RDA) was used to characterize the variation in zooplankton community
structure, and four axes (RD1–4) provided significant explanation. RD2–4
only explained < 4.8 % of variation in the zooplankton community and did
not show significant spatial difference; however, RD1, which explained
89.9 % of variation, did vary spatially. Positive and negative species
scores on RD1 represent warm- and cold-water species, respectively, and their
variation was mainly explained by water column mean temperature, and it is
considered to vary spatially with the CBTWC. The CBTWC intrusion to the cold
Toyama Bay is weak and occasional due to the submarine canyon structure of
the bay. Therefore, the varying bathymetric characteristics along the
Japanese coast of the Japan Sea generate the spatial variation in zooplankton
community structure, and dominance of warm-water species can be considered an
indicator of the CBTWC
- …