55 research outputs found

    La Palma 2021 Eruption Dike Modeling

    Get PDF
    Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2024, Tutores: Perla Piña-Varas, Pilar QueraltMagnetotelluric surveying has a huge potential for studying subsurface structures and processes due to its wide range of depths. It is particularly useful in igneous and volcanic events due to the considerable resistivity changes that rock undergoes at high temperatures. Despite that, few models and simulations solving the temperature-resistivity evolution with time have been proposed. The 2021 volcanic eruption in La Palma provided an excellent opportunity to develop a model of these characteristics given the constant monitoring and surveying data available of the periods during and after the eruption. The presence of electrical resistivity anomalies during the cooling process of the igneous intrusion made it even more interesting to develop a more complete and general model for these types of system

    Benefits of enhancing international mobility of pharmacy students

    Get PDF

    Dynamic constriction and fission of endoplasmic reticulum membranes by reticulon

    Get PDF
    The endoplasmic reticulum (ER) is a continuous cell-wide membrane network. Network formation has been associated with proteins producing membrane curvature and fusion, such as reticulons and atlastin. Regulated network fragmentation, occurring in different physiological contexts, is less understood. Here we find that the ER has an embedded fragmentation mechanism based upon the ability of reticulon to produce fission of elongating network branches. In Drosophila, Rtnl1-facilitated fission is counterbalanced by atlastin-driven fusion, with the prevalence of Rtnl1 leading to ER fragmentation. Ectopic expression of Drosophila reticulon in COS-7 cells reveals individual fission events in dynamic ER tubules. Consistently, in vitro analyses show that reticulon produces velocity-dependent constriction of lipid nanotubes leading to stochastic fission via a hemifission mechanism. Fission occurs at elongation rates and pulling force ranges intrinsic to the ER, thus suggesting a principle whereby the dynamic balance between fusion and fission controlling organelle morphology depends on membrane motility

    Dynamic constriction andfission of endoplasmicreticulum membranes by reticulon

    Get PDF
    The endoplasmic reticulum (ER) is a continuous cell-wide membrane network. Network formation has been associated with proteins producing membrane curvature and fusion, such as reticulons and atlastin. Regulated network fragmentation, occurring in different physiological contexts, is less understood. Here we find that the ER has an embedded fragmentation mechanism based upon the ability of reticulon to produce fission of elongating network branches. In Drosophila, Rtnl1-facilitated fission is counterbalanced by atlastin-driven fusion, with the prevalence of Rtnl1 leading to ER fragmentation. Ectopic expression of Drosophila reticulon in COS-7 cells reveals individual fission events in dynamic ER tubules. Consistently, in vitro analyses show that reticulon produces velocity-dependent constriction of lipid nanotubes leading to stochastic fission via a hemifission mechanism. Fission occurs at elongation rates and pulling force ranges intrinsic to the ER, thus suggesting a principle whereby the dynamic balance between fusion and fission controlling organelle morphology depends on membrane motility.This work was partially supported by NIH R01GM121725 to V.A.F., a 5x1000 grant from the Italian Ministry of Health and Telethon GGP11189 to A.D., Spanish Ministry of Science, Innovation and Universities grants BFU2015-70552-P to V.A.F. and A.V.S., and BFU2015-63714-R and PGC2018-099341-B-I00 to B.I., Basque Government grant IT1196-19, Russian Science Foundation Grant No. 17-75-30064 and Ministry of Science and Higher Education of the Russian Federation

    The Rise and Fall of "Respectable" Spanish Liberalism, 1808-1923: An Explanatory Framework

    Get PDF
    The article focuses on the reasons behind both the consolidation of what I have termed “respectable” liberalism between the 1830s and the 1840s and its subsequent decline and fall between 1900 and 1923. In understanding both processes I study the links established between “respectable” liberals and propertied elites, the monarchy, and the Church. In the first phase these links served to consolidate the liberal polity. However, they also meant that many tenets of liberal ideology were compromised. Free elections were undermined by the operation of caciquismo, monarchs established a powerful position, and despite the Church hierarchy working with liberalism, the doctrine espoused by much of the Church was still shaped by the Counter-Reformation. Hence, “respectable” liberalism failed to achieve a popular social base. And the liberal order was increasingly denigrated as part of the corrupt “oligarchy” that ruled Spain. Worse still, between 1916 and 1923 the Church, monarch, and the propertied elite increasingly abandoned the liberal Monarchist Restoration. Hence when General Primo de Rivera launched his coup the rug was pulled from under the liberals’ feet and there was no one to cushion the fall

    Associative learning and CA3-CA1 synaptic plasticity are impaired in D 1R null, Drd1a-/- mice and in hippocampal siRNA silenced Drd1a mice

    Get PDF
    et al.Associative learning depends on multiple cortical and subcortical structures, including striatum, hippocampus, and amygdala. Both glutamatergic and dopaminergic neurotransmitter systems have been implicated in learning and memory consolidation. While the role of glutamate is well established, the role of dopamine and its receptors in these processes is less clear. In this study, we used two models of dopamine D1 receptor (D1R, Drd1a) loss, D1R knock-out mice (Drd1a-/-) and mice with intrahippocampal injections of Drd1a-siRNA (small interfering RNA), to study the role of D1R in different models of learning, hippocampal long-term potentiation (LTP) and associated gene expression. D1R loss markedly reduced spatial learning, fear learning, and classical conditioning of the eyelid response, as well as the associated activity-dependent synaptic plasticity in the hippocampal CA1-CA3 synapse. These results provide the first experimental demonstration that D1R is required for trace eyeblink conditioning and associated changes in synaptic strength in hippocampus of behaving mice. Drd1a-siRNA mice were indistinguishable from Drd1a-/- mice in all experiments, indicating that hippocampal knockdown was as effective as global inactivation and that the observed effects are caused by loss of D1R and not by indirect developmental effects of Drd1a-/-. Finally, in vivo LTP and LTP-induced expression of Egr1 in the hippocampus were significantly reduced in Drd1a-/- and Drd1a-siRNA, indicating an important role for D1R in these processes. Our data reveal a functional relationship between acquisition of associative learning, increase in synaptic strength at the CA3-CA1 synapse, and Egr1 induction in the hippocampus by demonstrating that all three are dramatically impaired when D1R is eliminated or reduced. Copyright © 2010 the authors.This work was supported by Grant PI071073 from Plan Nacional Sobre Drogas from the Spanish Ministerio de Sanidad y Política Social and Spanish Ministerio de Ciencia e Innovación Grants BFU2010-20664 (R.M.) and BFU2005-01024 and BFU2005-02512 (J.M.D.-G. and A.G.). O.O. was supported by a Basque Government Ph.D. fellowship.Peer Reviewe

    Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3-/- aphakia mice

    No full text
    © 2014 Elsevier Inc. Nitric oxide (NO), a gaseous messenger molecule synthesized by nitric oxide synthase (NOS), plays a pivotal role in integrating dopamine transmission in the basal ganglia and has been implicated in the pathogenesis of Parkinson disease (PD). To study the role of the nitrergic system in l-DOPA-induced dyskinesia (LID), we assessed the effect of the pharmacological manipulation of NO levels and NO/cyclic guanosine monophosphate (cGMP) signaling on LID in the Pitx3-/- aphakia mouse, a genetic model of PD. To evaluate the effect of decreased NO signaling on the development of LID, Pitx3-/- mice were chronically treated with l-DOPA and 7-nitroindazole (7-NI, a neuronal NOS inhibitor). To evaluate its effect on the expression of established LID, 7-NI was administered acutely to dyskinetic mice. The chronic 7-NI treatment attenuated the development of LID in the Pitx3-/- mice, and the sub-acute 7-NI treatment attenuated established dyskinesia without affecting the beneficial therapeutic effect of l-DOPA. Moreover, 7-NI significantly reduced FosB and pAcH3 expression in the acutely and chronically l-DOPA-treated mice. We also examined how increasing NO/cGMP signaling affects LID expression by acutely administering molsidomine (an NO donor) or zaprinast (a cGMP phosphodiesterase 5-PDE5 inhibitor) before l-DOPA in mice with established dyskinesia. Paradoxically, the administration of either of these drugs also significantly diminished the expression of established LID; however, the effect occurred at the expense of the antiparkinsonian l-DOPA properties. We demonstrate that targeting the NO/cGMP signaling pathway reduces dyskinetic behaviors and molecular markers, but only the 7-NI treatment preserved the antiparkinsonian effect of l-DOPA, indicating that NOS inhibitors represent a potential therapy to reduce LID.Peer Reviewe

    Proteomic profiling of microtubule self-organization in M-phase.

    No full text
    Microtubules (MTs) and associated proteins can self-organize into complex structures such as the bipolar spindle, a process in which RanGTP plays a major role. Addition of RanGTP to M-phase Xenopus egg extracts promotes the nucleation and self-organization of MTs into asters and bipolar-like structures in the absence of centrosomes or chromosomes. We show here that the complex proteome of these RanGTP-induced MT assemblies is similar to that of mitotic spindles. Using proteomic profiling we show that MT self-organization in the M-phase cytoplasm involves the non-linear and non-stoichiometric recruitment of proteins from specific functional groups. Our study provides for the first time a temporal understanding of the protein dynamics driving MT self-organization in M-phase

    Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining

    No full text
    Methamphetamine is a widely abused illicit drug. Recent epidemiological studies showed that methamphetamine increases the risk for developing Parkinson's disease (PD) in agreement with animal studies showing dopaminergic neurotoxicity. We examined the effect of repeated low and medium doses vs single high dose of methamphetamine on degeneration of dopaminergic terminals and cell bodies. Mice were given methamphetamine in one of the following paradigms: three injections of 5 or 10 mg/kg at 3 h intervals or a single 30 mg/kg injection. The integrity of dopaminergic fibers and cell bodies was assessed at different time points after methamphetamine by tyrosine hydroxylase immunohistochemistry and silver staining. The 3 × 10 protocol yielded the highest loss of striatal dopaminergic terminals, followed by the 3 × 5 and 1 × 30. Some degenerating axons could be followed from the striatum to the substantia nigra pars compacta (SNpc). All protocols induced similar significant degeneration of dopaminergic neurons in the SNpc, evidenced by amino-cupric-silver-stained dopaminergic neurons. These neurons died by necrosis and apoptosis. Methamphetamine also killed striatal neurons. By using D1-Tmt/D2-GFP BAC transgenic mice, we observed that degenerating striatal neurons were equally distributed between direct and indirect medium spiny neurons. Despite the reduced number of dopaminergic neurons in the SNpc at 30 days after treatment, there was a partial time-dependent recovery of dopamine terminals beginning 3 days after treatment. Locomotor activity and motor coordination were robustly decreased 1-3 days after treatment, but recovered at later times along with dopaminergic terminals. These data provide direct evidence that methamphetamine causes long-lasting loss/degeneration of dopaminergic cell bodies in the SNpc, along with destruction of dopaminergic terminals in the striatum. © 2014 American College of Neuropsychopharmacology.Peer Reviewe
    corecore