473 research outputs found

    The microbial diversity of the Su Bentu cave, Italy and the influence of human exploration.

    Get PDF
    Introduction: The microbial diversity in the Su Bentu Cave (Sardinia, Italy) was investigated by means of Illumina MiSeq analysis. The hypogean environment is of great interest for astrobiological research as cave conditions may resemble those in extra-terrestrial regions. Furthermore, they hold high potential to identify novel, extremely adapted organisms to severely oligo-trophic habitats. However, the influence of human is not neglectable and in-depth investigations are needed to determine the impact of exploration on an otherwise mostly pristine ecosystem. The cave investigated in this study develops for several kilometres into the mountain, two hundred metres below the topographic surface and is characterized by a strong air circulation. Its structure is composed of huge passages carved in limestone where an ephemeral underground stream creates some lakes, close to which seven samples of visible calcite rafts, manganese deposits and moonmilk (a hydrated calcium carbonate speleothem), were sampled during an expedition in 2014. Other samples were re-trieved from a frequently used campsite and from some dry cave passages leading deeper into the cave

    Tower and Aircraft Eddy Covariance Measurements of Water Vapor, Energy, and Carbon Dioxide Fluxes during SMACEX

    Get PDF
    Abstract A network of eddy covariance (EC) and micrometeorological flux (METFLUX) stations over corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] canopies was established as part of the Soil Moisture–Atmosphere Coupling Experiment (SMACEX) in central Iowa during the summer of 2002 to measure fluxes of heat, water vapor, and carbon dioxide (CO2) during the growing season. Additionally, EC measurements of water vapor and CO2 fluxes from an aircraft platform complemented the tower-based measurements. Sensible heat, water vapor, and CO2 fluxes showed the greatest spatial and temporal variability during the early crop growth stage. Differences in all of the energy balance components were detectable between corn and soybean as well as within similar crops throughout the study period. Tower network–averaged fluxes of sensible heat, water vapor, and CO2 were observed to be in good agreement with area-averaged aircraft flux measurements

    Vertical distribution of aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign

    Get PDF
    On 7 March 2006, a mobile, ground-based, vertical pointing, elastic lidar system made a North-South transect through the Mexico City basin. Column averaged, aerosol size distribution (ASD) measurements were made on the ground concurrently with the lidar measurements. The ASD ground measurements allowed calculation of the column averaged mass extinction efficiency (MEE) for the lidar system (1064 nm). The value of column averaged MEE was combined with spatially resolved lidar extinction coefficients to produce total aerosol mass concentration estimates with the resolution of the lidar (1.5 m vertical spatial and 1 s temporal). Airborne ASD measurements from DOE G-1 aircraft made later in the day on 7 March 2006, allowed the evaluation of the assumptions of constant ASD with height and time used for estimating the column averaged MEE. <br><br> The results showed that the aerosol loading within the basin is about twice what is observed outside of the basin. The total aerosol base concentrations observed in the basin are of the order of 200 ÎĽg/m<sup>3</sup> and the base levels outside are of the order of 100 ÎĽg/m<sup>3</sup>. The local heavy traffic events can introduce aerosol levels near the ground as high as 900 ÎĽg/m<sup>3</sup>. <br><br> The article presents the methodology for estimating aerosol mass concentration from mobile, ground-based lidar measurements in combination with aerosol size distribution measurements. An uncertainty analysis of the methodology is also presented

    Probing Polyelectrolyte Elasticity Using Radial Distribution Function

    Full text link
    We study the effect of electrostatic interactions on the distribution function of the end-to-end distance of a single polyelectrolyte chain in the rodlike limit. The extent to which the radial distribution function of a polyelectrolyte is reproduced by that of a wormlike chain with an adjusted persistence length is investigated. Strong evidence is found for a universal scaling formula connecting the effective persistence length of a polyelectrolyte with its linear charge density and the Debye screening of its self-interaction. An alternative definition of the electrostatic persistence length is proposed based on matching of the maximum of the distribution with that of an effective wormlike chain, as opposed to the traditional matching of the first or the second moments of the distributions. It is shown that this definition provides a more accurate probe of the affinity of the distribution to that of the wormlike chains, as compared to the traditional definition. It is also found that the length of a polyelectrolyte segment can act as a crucial parameter in determining its elastic properties.Comment: 15 pages, 19 figure

    Phenotypic Variability of Childhood Charcot-Marie-Tooth Disease

    Get PDF
    IMPORTANCE: Disease severity of childhood Charcot-Marie-Tooth disease (CMT) has not been extensively characterized, either within or between types of CMT to date. OBJECTIVE: To assess the variability of disease severity in a large cohort of children and adolescents with CMT. DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional study was conducted among 520 children and adolescents aged 3 to 20 years at 8 universities and hospitals involved in the Inherited Neuropathies Consortium between August 6, 2009, and July 31, 2014, in Australia, Italy, the United Kingdom, and the United States. Data analysis was conducted from August 1, 2014, to December 1, 2015. MAIN OUTCOMES AND MEASURES: Scores on the Charcot-Marie-Tooth Disease Pediatric Scale (CMTPedS), a well-validated unidimensional clinical outcome measure to assess disease severity. This instrument includes 11 items assessing fine and gross motor function, sensation, and balance to produce a total score ranging from 0 (unaffected) to 44 (severely affected). RESULTS: Among the 520 participants (274 males) aged 3 to 20 years, CMT type 1A (CMT1A) was the most prevalent type (252 [48.5%]), followed by CMT2A (31 [6.0%]), CMT1B (15 [2.9%]), CMT4C (13 [2.5%]), and CMTX1 (10 [1.9%]). Disease severity ranged from 1 to 44 points on the CMTPedS (mean [SD], 21.5 [8.9]), with ankle dorsiflexion strength and functional hand dexterity test being most affected. Participants with CMT1B (mean [SD] CMTPedS score, 24.0 [7.4]), CMT2A (29.7 [7.1]), and CMT4C (29.8 [8.6]) were more severely affected than those with CMT1A (18.9 [7.7]) and CMTX1 (males: 15.3 [7.7]; females: 13.0 [3.6]) (P < .05). Scores on the CMTPedS tended to worsen principally during childhood (ages, 3-10 years) for participants with CMT4C and CMTX1 and predominantly during adolescence for those with CMT1B and CMT2A (ages, 11-20 years), while CMT1A worsened consistently throughout childhood and adolescence. For individual items, participants with CMT4C recorded more affected functional dexterity test scores than did those with all other types of CMT (P < .05). Participants with CMT1A and CMTX1 performed significantly better on the 9-hole peg test and balance test than did those with all other types of CMT (P < .05). Participants with CMT2A had the weakest grip strength (P < .05), while those with CMT2A and CMT4C exhibited the weakest ankle plantarflexion and dorsiflexion strength, as well as the lowest long jump and 6-minute walk test distances (P < .05). Multiple regression modeling identified increasing age (r = 0.356, β = 0.617, P < .001) height (r = 0.251, β = 0.309, P = .002), self-reported foot pain (r = 0.162, β = .114, P = .009), and self-reported hand weakness (r = 0.243, β = 0.203, P < .001) as independent predictors of disease severity. CONCLUSIONS AND RELEVANCE: These results highlight the phenotypic variability within CMT genotypes and mutation-specific manifestations between types. This study has identified distinct functional limitations and self-reported impairments to target in future therapeutic trials

    Concomitant homozygosity for the prothrombin gene variant with mild deficiency of antithrombin III in a patient with multiple hepatic infarctions: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hereditary causes of visceral thrombosis or thrombosis should be sought among young patients. We present a case of a young man presenting with multiple hepatic infarctions resulting in portal hypertension due to homozygosity of the prothrombin gene mutation not previously described in literature.</p> <p>Case presentation</p> <p>A 42-year-old Caucasian man with a previous history of idiopathic deep vein thrombosis 11 years earlier presented with vague abdominal pains and mildly abnormal liver function tests. An ultrasound and computed tomography scan showed evidence of hepatic infarction and portal hypertension (splenic varices). A thrombophilia screen confirmed a homozygous mutation for the prothrombin gene mutation, with mildly reduced levels of anti-thrombin III (AT III). Subsequent testing of his father and brother revealed heterozygosity for the same gene mutation.</p> <p>Conclusion</p> <p>Hepatic infarction is unusual due to the rich dual arterial and venous blood supply to the liver. In the absence of an arterial or haemodynamic insult causing hepatic infarction, a thrombophilia should be considered. To our knowledge, this is the first reported case of a hepatic infarction due to homozygosity of the prothrombin gene mutation. It is unclear whether homozygotes have a higher risk of thrombosis than heterozygotes. In someone presenting with a first thrombosis with this mutation, the case for life-long anticoagulation is unclear, but it may be necessary to prevent a second and more severe second thrombotic event, as occurred in this case.</p

    Texture analysis-and support vector machine-assisted diffusional kurtosis imaging may allow in vivo gliomas grading and IDH-mutation status prediction:a preliminary study

    Get PDF
    We sought to investigate, whether texture analysis of diffusional kurtosis imaging (DKI) enhanced by support vector machine (SVM) analysis may provide biomarkers for gliomas staging and detection of the IDH mutation. First-order statistics and texture feature extraction were performed in 37 patients on both conventional (FLAIR) and mean diffusional kurtosis (MDK) images and recursive feature elimination (RFE) methodology based on SVM was employed to select the most discriminative diagnostic biomarkers. The first-order statistics demonstrated significantly lower MDK values in the IDH-mutant tumors. This resulted in 81.1% accuracy (sensitivity = 0.96, specificity = 0.45, AUC 0.59) for IDH mutation diagnosis. There were non-significant differences in average MDK and skewness among the different tumour grades. When texture analysis and SVM were utilized, the grading accuracy achieved by DKI biomarkers was 78.1% (sensitivity 0.77, specificity 0.79, AUC 0.79); the prediction accuracy for IDH mutation reached 83.8% (sensitivity 0.96, specificity 0.55, AUC 0.87). For the IDH mutation task, DKI outperformed significantly the FLAIR imaging. When using selected biomarkers after RFE, the prediction accuracy achieved 83.8% (sensitivity 0.92, specificity 0.64, AUC 0.88). These findings demonstrate the superiority of DKI enhanced by texture analysis and SVM, compared to conventional imaging, for gliomas staging and prediction of IDH mutational status

    Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation

    Get PDF
    Background Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation. Results We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum. Conclusions The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns

    The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi

    Get PDF
    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily
    • …
    corecore