106 research outputs found
Del Pezzo surfaces and local inequalities
I prove new local inequality for divisors on smooth surfaces, describe its
applications, and compare it to a similar local inequality that is already
known by experts.Comment: 13 pages; to appear in the proceedings of the conference "Groups of
Automorphisms in Birational and Affine Geometry", Levico Terme (Trento), 201
Log canonical thresholds of Del Pezzo Surfaces in characteristic p
The global log canonical threshold of each non-singular complex del Pezzo
surface was computed by Cheltsov. The proof used Koll\'ar-Shokurov's
connectedness principle and other results relying on vanishing theorems of
Kodaira type, not known to be true in finite characteristic.
We compute the global log canonical threshold of non-singular del Pezzo
surfaces over an algebraically closed field. We give algebraic proofs of
results previously known only in characteristic . Instead of using of the
connectedness principle we introduce a new technique based on a classification
of curves of low degree. As an application we conclude that non-singular del
Pezzo surfaces in finite characteristic of degree lower or equal than are
K-semistable.Comment: 21 pages. Thorough rewrite following referee's suggestions. To be
published in Manuscripta Mathematic
Exceptional del Pezzo hypersurfaces
We compute global log canonical thresholds of a large class of quasismooth
well-formed del Pezzo weighted hypersurfaces in
. As a corollary we obtain the existence
of orbifold K\"ahler--Einstein metrics on many of them, and classify
exceptional and weakly exceptional quasismooth well-formed del Pezzo weighted
hypersurfaces in .Comment: 149 pages, one reference adde
Non-factorial nodal complete intersection threefolds
We give a bound on the minimal number of singularities of a nodal projective
complete intersection threefold which contains a smooth complete intersection
surface that is not a Cartier divisor
Spitsbergen volume : Frontiers of Rationality
This volume contains 20 papers related to the workshop Frontiers of Rationality that was held in Longyearbyen, Spitsbergen, in July 2014
Three embeddings of the Klein simple group into the Cremona group of rank three
We study the action of the Klein simple group G consisting of 168 elements on
two rational threefolds: the three-dimensional projective space and a smooth
Fano threefold X of anticanonical degree 22 and index 1. We show that the
Cremona group of rank three has at least three non-conjugate subgroups
isomorphic to G. As a by-product, we prove that X admits a Kahler-Einstein
metric, and we construct a smooth polarized K3 surface of degree 22 with an
action of the group G.Comment: 43 page
Weakly--exceptional quotient singularities
A singularity is said to be weakly--exceptional if it has a unique purely log
terminal blow up. In dimension , V. Shokurov proved that weakly--exceptional
quotient singularities are exactly those of types , , ,
. This paper classifies the weakly--exceptional quotient singularities
in dimensions and
Cremona groups of real surfaces
We give an explicit set of generators for various natural subgroups of the real Cremona group BirR(P2). This completes and unifies former results by several authors
Del Pezzo surfaces with many symmetries
We classify smooth del Pezzo surfaces whose alpha-invariant of Tian is bigger
than one.Comment: 23 page
- …
