THE UNIVERSITY of EDINBURGH

## Edinburgh Research Explorer

## Del Pezzo Surfaces with Many Symmetries

## Citation for published version:

Cheltsov, I \& Wilson, A 2012, 'Del Pezzo Surfaces with Many Symmetries' Journal of Geometric Analysis, vol. 23, no. 3, pp. 1257-1289. DOI: 10.1007/s12220-011-9286-9

Digital Object Identifier (DOI):
10.1007/s12220-011-9286-9

Link:
Link to publication record in Edinburgh Research Explorer

## Document Version:

Peer reviewed version

## Published In:

Journal of Geometric Analysis

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s12220-011-9286-9

## General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

## Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

# DEL PEZZO SURFACES WITH MANY SYMMETRIES 

IVAN CHELTSOV AND ANDREW WILSON

Abstract. We classify smooth del Pezzo surfaces whose $\alpha$-invariant of Tian is bigger than 1 .

We assume that all varieties are projective, normal, and defined over $\mathbb{C}$.

## 1. Introduction

Let $X$ be a smooth Fano variety, and let $G$ be a finite subgroup in $\operatorname{Aut}(X)$. Put

$$
\operatorname{lct}_{n}(X, G)=\sup \left\{\begin{array}{l|l}
\lambda \in \mathbb{Q} & \begin{array}{l}
\text { the log pair }\left(X, \frac{\lambda}{n} D\right) \text { is log canonical } \\
\text { for any } G \text {-invariant divisor } D \in\left|-n K_{X}\right|
\end{array}
\end{array}\right\} \in \mathbb{Q} \cup\{+\infty\}
$$

for every $n \in \mathbb{N}$. Then $\operatorname{lct}_{n}(X) \neq+\infty \Longleftrightarrow\left|-n K_{X}\right|$ contains a $G$-invariant divisor. Put

$$
\operatorname{lct}(X, G)=\inf \left\{\operatorname{lct}_{n}(X, G) \mid n \in \mathbb{N}\right\} \in \mathbb{R}
$$

and put $\operatorname{lct}(X)=\operatorname{lct}(X, G)$ in the case when $G$ is a trivial group.
Example 1.1 ([1, Theorem 1.7]). Suppose that $\operatorname{dim}(X)=2$. Then

$$
\operatorname{lct}(X)=\left\{\begin{array}{l}
1 \text { when } K_{X}^{2}=1 \text { and }\left|-K_{X}\right| \text { has no cusp } \\
5 / 6 \text { when } K_{X}^{2}=1 \text { and }\left|-K_{X}\right| \text { has a cus } \\
5 / 6 \text { when } K_{X}^{2}=2 \text { and }\left|-K_{X}\right| \text { has no ta } \\
3 / 4 \text { when } K_{X}^{2}=2 \text { and }\left|-K_{X}\right| \text { has a tac } \\
3 / 4 \text { when } X \text { is a cubic surface in } \mathbb{P}^{3} \text { with } \\
2 / 3 \text { when } K_{X}^{2}=4 \text { or } X \text { is a cubic surface } \\
1 / 2 \text { when } X \cong \mathbb{P}^{1} \times \mathbb{P}^{1} \text { or } K_{X}^{2} \in\{5,6\}, \\
1 / 3 \text { in the remaining cases. }
\end{array}\right.
$$

The number lct $(X, G)$ plays an important role in Kähler Geometry, since

$$
\operatorname{lct}(X, G)=\alpha_{G}(X)
$$

by [3, Theorem A.3], where $\alpha_{G}(X)$ is the $\alpha$-invariant introduced in [10.
Theorem 1.2 ([10]). The variety $X$ admits a $G$-invariant Kähler-Einstein metric if

$$
\operatorname{lct}(X, G)>\frac{\operatorname{dim}(X)}{\operatorname{dim}(X)+1}
$$

The problem of the existence of Kähler-Einstein metrics on smooth del Pezzo surfaces is solved.
Theorem 1.3 ([1]). If $\operatorname{dim}(X)=2$, then the following conditions are equivalent:

- the surface $X$ admits a Kähler-Einstein metric,
- the surface $X$ is not the blow up of $\mathbb{P}^{2}$ in one or two points.

[^0]Let $g_{0}=g_{i \bar{j}}$ be a $G$-invariant Kähler metric on the variety $X$ with a Kähler form

$$
\omega_{0}=\frac{\sqrt{-1}}{2 \pi} \sum g_{i \bar{j}} d z_{i} \wedge d \bar{z}_{j} \in \mathrm{c}_{1}(X)
$$

and let $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$ be Kähler forms of some $G$-invariant metrics on $X$ such that

$$
\left\{\begin{array}{l}
\operatorname{Ric}\left(\omega_{m}\right)=\omega_{m-1}  \tag{1.4}\\
\cdots \\
\operatorname{Ric}\left(\omega_{2}\right)=\omega_{1} \\
\operatorname{Ric}\left(\omega_{1}\right)=\omega_{0}
\end{array}\right.
$$

and $\omega_{i} \in \mathrm{c}_{1}(X)$ for every $i$. By [12], a solution to (1.4) always exist.
Theorem 1.5 ([9, Theorem 3.3]). Suppose that $\operatorname{lct}(X, G)>1$. Then in $C^{\infty}(X)$-topology

$$
\lim _{m \rightarrow+\infty} \omega_{m}=\omega_{K E},
$$

where $\omega_{K E}$ is a Kähler form of a $G$-invariant Kähler-Einstein metric on the variety $X$.
Smooth Fano varieties that satisfy all hypotheses of Theorem 1.5 do exist.
Example 1.6. If $X \cong \mathbb{P}^{1}$, then $\operatorname{lct}\left(\mathbb{P}^{1}, G\right)>1 \Longleftrightarrow$ either $G \cong \mathbb{A}_{4}$ or $G \cong \mathbb{S}_{4}$ or $G \cong \mathbb{A}_{5}$.
Theorem 1.7 ([3, Lemma 2.30]). Let $X_{1}$ and $X_{2}$ be smooth Fano varieties. Then

$$
\operatorname{lct}\left(X_{1} \times X_{2}, G_{1} \times G_{2}\right)=\min \left(\operatorname{lct}\left(X_{1}, G_{1}\right), \operatorname{lct}\left(X_{2}, G_{2}\right)\right)
$$

where $G_{1}$ and $G_{2}$ are finite subgroups in $\operatorname{Aut}\left(X_{1}\right)$ and $\operatorname{Aut}\left(X_{2}\right)$ respectively.
Corollary 1.8. Let $G_{1}$ and $G_{2}$ be finite subgroups in $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$. Then

$$
\operatorname{lct}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, G_{1} \times G_{2}\right)>1 \Longleftrightarrow G_{1} \in\left\{\mathbb{A}_{4}, \mathbb{S}_{4}, \mathbb{A}_{5}\right\} \ni G_{2}
$$

The purpose of this paper is to consider the following two problems.
Problem 1.9. Describe all smooth del Pezzo surfaces that satisfy all hypotheses of Theorem 1.5,
Problem 1.10. For a smooth del Pezzo surface $X$ that satisfy all hypotheses of Theorem 1.5, describe all finite subgroups of the $\operatorname{group} \operatorname{Aut}(X)$ that satisfy all hypotheses of Theorem 1.5,

There exists a partial solution to Problem 1.9 (cf. Corollary 1.8).
Example 1.11 ( 8 , [1], 4). If $\operatorname{dim}(X)=2$ and $\operatorname{Aut}(X)$ is finite, then

- $\operatorname{lct}(X, \operatorname{Aut}(X))=2$ if $X$ is the Clebsch cubic surface in $\mathbb{P}^{3}$, which can be given by

$$
x^{2} y+x z^{2}+z t^{2}+t x^{2}=0 \subset \mathbb{P}^{3} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

- $\operatorname{lct}(X, \operatorname{Aut}(X))=4$ if $X$ is the Fermat cubic surface in $\mathbb{P}^{3}$,
- $\operatorname{lct}(X, \operatorname{Aut}(X))=2$ if $X$ is the blow up of $\mathbb{P}^{2}$ at four general points.

There exists a complete solution to Problem 1.10 for $\mathbb{P}^{2}$ (cf. Theorem 7.5).
Example 1.12 ( $[8],[4])$. Suppose that $X \cong \mathbb{P}^{2}$. Then the following are equivalent:

- the inequality $\operatorname{lct}(X, G)>1$ holds,
- the inequality $\operatorname{lct}(X, G) \geqslant 4 / 3$ holds,
- there are no $G$-invariant curves in $|L|,|2 L|,|3 L|$, where $L$ is a line on $\mathbb{P}^{2}$,
- the subgroup $G$ is conjugate to one of the following subgroups:
- the subgroup isomorphic to $\mathbb{P S L}\left(2, \mathbb{F}_{7}\right)$ that leaves invariant th quartic curve

$$
x^{3} y+y^{3} z+z^{3} x=0 \subset \mathbb{P}^{2} \cong \operatorname{Proj}(\mathbb{C}[x, y, z])
$$

- the subgroup isomorphic to $\mathbb{A}_{6}$ that leaves invariant the sextic curve

$$
10 x^{3} y^{3}+9 z x^{5}+9 z y^{5}+27 z^{6}=45 x^{2} y^{2} z^{2}+135 x y z^{4} \subset \mathbb{P}^{2} \cong \operatorname{Proj}(\mathbb{C}[x, y, z])
$$

- the Hessian subgroup of order 648 (see [13]),
- an index 3 subgroup of the Hessian subgroup.

In this paper, we prove the following result, which solves Problem 1.9 ,
Theorem 1.13. Suppose that $\operatorname{dim}(X)=2$. Then the following are equivalent:

- there exists a finite subgroup $G \subset \operatorname{Aut}(X)$ such that $\operatorname{lct}(X, G)>1$,
- one of the following cases hold:
- either $X \cong \mathbb{P}^{2}$ or $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$,
- or $\operatorname{Aut}(X)$ is finite and $X$ is one of the following surfaces:
* a sextic surface in $\mathbb{P}(1,1,2,3)$ such that $\operatorname{Aut}(X)$ is not Abelian
* a quartic surface in $\mathbb{P}(1,1,1,3)$ such that

$$
\operatorname{Aut}(X) \in\left\{\mathbb{S}_{4} \times \mathbb{Z}_{2},\left(\mathbb{Z}_{4}^{2} \rtimes \mathbb{S}_{3}\right) \times \mathbb{Z}_{2}, \mathbb{P S L}\left(2, \mathbb{F}_{7}\right) \times \mathbb{Z}_{2}\right\}
$$

* either the Clebsch cubic surface or the Fermat cubic surface in $\mathbb{P}^{3}$,
* an intersection of two quadrics in $\mathbb{P}^{4}$ such that $\operatorname{Aut}(X) \in\left\{\mathbb{Z}_{2}^{4} \rtimes \mathbb{S}_{3}, \mathbb{Z}_{2}^{4} \rtimes \mathbb{D}_{5}\right\}$, * the blow of $\mathbb{P}^{2}$ at four general points.

Proof. This follows from Examples 1.11 and 1.12, Corollaries 1.8, 3.14, 4.16, 5.3, 6.5 and 7.4,
Corollary 1.14. If $\operatorname{dim}(X)=2$ and $\operatorname{Aut}(X)$ is finite, then the following are equivalent:

- the inequality $\operatorname{lct}(X, \operatorname{Aut}(X))>1$ holds,
- the linear system $\left|-K_{X}\right|$ contains no $\operatorname{Aut}(X)$-invariant curves.

The proof of Theorem 1.13 is based on auxiliary results (see Theorems 3.5, 3.6, 4.4, 4.5 and 5.4) that can be used to explicitly compute the number $\operatorname{lct}(X, G)$ in many cases.
Example 1.15. Let $X$ be a sextic hypersurface in $\mathbb{P}(1,1,2,3)$ that is given by

$$
t^{2}=z^{3}+x y\left(x^{4}-y^{4}\right) \subset \mathbb{P}(1,1,2,3) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t]),
$$

where $\operatorname{wt}(x)=\operatorname{wt}(y)=1, \operatorname{wt}(z)=2, \operatorname{wt}(t)=3$. Then $\operatorname{Aut}(X) \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2} \mathbb{S}_{4}$, which implies that

$$
\operatorname{lct}(X, \operatorname{Aut}(X))=\operatorname{lct}_{2}(X, \operatorname{Aut}(X))=\frac{5}{3}
$$

by Theorems 1.13 and 3.6, since there is a $\operatorname{Aut}(X)$-invariant cuspidal curve in $\left|-2 K_{X}\right|$.
We decided not to solve Problem 1.10 in this paper as the required amount of computations is too big (a priori this can be done using Theorem 1.13 and Theorem 7.5).
Example 1.16. Suppose that $X$ is the blow of $\mathbb{P}^{2}$ at four general points. Then $\operatorname{Aut}(X) \cong \mathbb{S}_{5}$ and

$$
\operatorname{lct}(X, G)>1 \Longleftrightarrow \operatorname{lct}(X, G)=2 \Longleftrightarrow|G| \in\{60,120\}
$$

since it easily follows from Example [1.1, Corollary 2.16, [1, Lemma 5.7] and [1, Lemma 5.8] that

$$
\operatorname{lct}(X, G)=\left\{\begin{array}{l}
2 \text { if } G \cong \mathbb{S}_{5}, \\
2 \text { if } G \cong \mathbb{A}_{5}, \\
1 \text { if } G \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4}, \\
4 / 5 \text { if } G \cong \mathbb{D}_{5}, \\
4 / 5 \text { if } G \cong \mathbb{Z}_{5}, \\
1 / 2 \text { if } G \text { is a trivial group. }
\end{array}\right.
$$

Note that the number lct $(X, G)$ plays an important role in Birational Geometry (see [3], [1]), but we decided not to discuss birational applications of Theorem 1.13 in this paper.

## 2. Preliminaries

Let $X$ be a smooth surface, and let $D$ be an effective $\mathbb{Q}$-divisor on $X$. Put

$$
D=\sum_{i=1}^{r} a_{i} D_{i},
$$

where $D_{i}$ is an irreducible curve, and $a_{i} \in \mathbb{Q}$ such that $a_{i} \geqslant 0$. Suppose that $B_{i} \neq B_{j}$ for $i \neq j$.
Let $\pi: \bar{X} \rightarrow X$ be a birational morphism such that $\bar{X}$ is smooth as well. Put $\bar{D}=\sum_{i=1}^{r} a_{i} \bar{D}_{i}$, where $\bar{D}_{i}$ is a proper transform of the curve $D_{i}$ on the surface $\bar{X}$. Then

$$
K_{\bar{X}}+\bar{D} \sim_{\mathbb{Q}} \pi^{*}\left(K_{X}+D\right)+\sum_{i=1}^{n} c_{i} E_{i},
$$

where $c_{i} \in \mathbb{Q}$ and $E_{i}$ is a $\pi$-exceptional curve. Suppose that $\sum_{i=1}^{r} \bar{D}_{i}+\sum_{i=1}^{n} E_{i}$ is a s.n.c. divisor.
Definition 2.1. The $\log$ pair $(X, D)$ is KLT (respectively, $\log$ canonical) if

- the inequality $a_{i}<1$ holds (respectively, the inequality $a_{i} \leqslant 1$ holds),
- the inequality $c_{j}>-1$ holds (respectively, the inequality $c_{j} \geqslant-1$ holds), for every $i \in\{1, \ldots, r\}$ and $j \in\{1, \ldots, n\}$.

We say that $(X, D)$ is strictly $\log$ canonical if $(X, D)$ is $\log$ canonical and not KLT.
Remark 2.2. The $\log$ pair $(X, D)$ is KLT $\Longleftrightarrow$ the $\log$ pair $\left(\bar{X}, \bar{D}-\sum_{i=1}^{n} c_{i} E_{i}\right)$ is KLT.
Note that Definition 2.1 has local nature and it does not depend on the choice of $\pi$.
Remark 2.3. Let $\hat{D}$ be an effective $\mathbb{Q}$-divisor on the surface $X$ such that $(X, \hat{D})$ is KLT and

$$
\hat{D}=\sum_{i=1}^{r} \hat{a}_{i} D_{i} \sim_{\mathbb{Q}} D
$$

where $\hat{a}_{i}$ is a non-negative rational number. Suppose that $(X, D)$ is not KLT. Put

$$
\alpha=\min \left\{\left.\frac{a_{i}}{\hat{a}_{i}} \right\rvert\, \hat{a}_{i} \neq 0\right\},
$$

where $\alpha$ is well defined and $\alpha<1$, since $(X, D)$ is not KLT. Put

$$
D^{\prime}=\sum_{i=1}^{r} \frac{a_{i}-\alpha \hat{a}_{i}}{1-\alpha} D_{i} \sim_{\mathbb{Q}} \hat{D} \sim_{\mathbb{Q}} D
$$

and choose $k \in\{1, \ldots, r\}$ such that $\alpha=a_{k} / \hat{a}_{k}$. Then $D_{k} \not \subset \operatorname{Supp}\left(D^{\prime}\right)$ and $\left(X, D^{\prime}\right)$ is not KLT.
Let $P$ be a point of the surface $X$. Recall that $X$ is smooth by assumption. Then

$$
\operatorname{mult}_{P}(D) \geqslant 2 \Longrightarrow P \in \operatorname{LCS}(X, D) \Longrightarrow \operatorname{mult}_{P}(D) \geqslant 1
$$

Example 2.4. If $r=4, a_{1}=1 / 2, a_{2}=a_{3}=a_{4}=2 / 5$ and

$$
3 \geqslant \operatorname{mult}_{P}\left(D_{2} \cdot D_{1}\right) \geqslant 2=\operatorname{mult}_{P}\left(D_{3} \cdot D_{1}\right) \geqslant \operatorname{mult}_{P}\left(D_{4} \cdot D_{1}\right)=1
$$

then the $\log$ pair $(X, D)$ is $\log$ canonical at the point $P \in X$.
The set of non-KLT points of the $\log$ pair $(X, D)$ is denoted by $\operatorname{LCS}(X, D)$. Put

$$
\mathcal{I}(X, D)=\pi_{*}\left(\sum_{i=1}^{n}\left\lceil c_{i}\right\rceil E_{i}-\sum_{i=1}^{r}\left\lfloor a_{i}\right\rfloor D_{i}\right),
$$

and let $\mathcal{L}(X, D)$ be a subscheme that corresponds to the ideal sheaf $\mathcal{I}(X, D)$. Then

$$
\operatorname{LCS}(X, D)=\operatorname{Supp}(\mathcal{L}(X, D))
$$

Theorem 2.5 ([7, Theorem 9.4.8]). Let $H$ be a nef and big $\mathbb{Q}$-divisor on $X$ such that

$$
K_{X}+D+H \equiv L
$$

for some Cartier divisor $L$ on the surface $X$. Then $H^{1}\left(\mathcal{I}(X, D) \otimes \mathcal{O}_{X}(L)\right)=0$.
Let $\eta: X \rightarrow Z$ be a surjective morphism with connected fibers.
Theorem 2.6 ([6, Theorem 7.4]). Let $F$ be a fiber of the morphism $\eta$. Then the locus

$$
\operatorname{LCS}(X, D) \cap F
$$

is connected if $-\left(K_{X}+D\right)$ is $\eta$-nef and $\eta$-big.
Corollary 2.7. If $-\left(K_{X}+D\right)$ is ample, then $\operatorname{LCS}(X, D)$ is connected.
Recall that $\mathcal{I}(X, D)$ is known as the multiplier ideal sheaf (see [7, Section 9.2]).
Lemma 2.8 ( 6, Theorem 7.5]). Suppose that the $\log$ pair $(X, D)$ is KLT in a punctured neighborhood of the point $P$, but the $\log$ pair $(X, D)$ is not KLT at the point $P$. Then

$$
\left(\sum_{i=2}^{r} a_{i} D_{i}\right) \cdot D_{1}>1
$$

in the case when $P \in D_{1} \backslash \operatorname{Sing}\left(D_{1}\right)$.
Recall that it follows from Definition 2.1 that if the $\log$ pair $(X, D)$ is KLT in a punctured neighborhood of the point $P \in X$, then $a_{i}<1$ for every $i \in\{1, \ldots, r\}$.

Theorem 2.9 ([2, Theorem 1.28]). In the assumptions and notation of Lemma [2.8, suppose that

$$
P \in\left(D_{1} \backslash \operatorname{Sing}\left(D_{1}\right)\right) \bigcap\left(D_{2} \backslash \operatorname{Sing}\left(D_{2}\right)\right)
$$

and the curve $D_{1}$ intersects the curve $D_{2}$ transversally at the point $P \in X$. Then

$$
\left(\sum_{i=3}^{r} a_{i} D_{i}\right) \cdot D_{1} \geqslant M+A a_{1}-a_{2} \text { or }\left(\sum_{i=3}^{r} a_{i} D_{i}\right) \cdot D_{2} \geqslant N+B a_{2}-a_{1}
$$

for some non-negative rational numbers $A, B, M, N, \alpha, \beta$ that satisfy the following conditions:

- $\alpha a_{1}+\beta a_{2} \leqslant 1$ and $A(B-1) \geqslant 1 \geqslant \max (M, N)$,
- $\alpha(A+M-1) \geqslant A^{2}(B+N-1) \beta$ and $\alpha(1-M)+A \beta \geqslant A$,
- either $2 M+A N \leqslant 2$ or $\alpha(B+1-M B-N)+\beta(A+1-A N-M) \geqslant A B-1$.

Corollary 2.10. In the assumptions and notation of Theorem [2.9, if $6 a_{1}+a_{2}<4$, then

$$
\left(\sum_{i=3}^{r} a_{i} D_{i}\right) \cdot D_{1}>2 a_{1}-a_{2} \text { or }\left(\sum_{i=3}^{r} a_{i} D_{i}\right) \cdot D_{2}>1+\frac{3}{2} a_{2}-a_{1} .
$$

Let $\sigma: \tilde{X} \rightarrow X$ be a blow up of the point $P$, and let $F$ be the $\sigma$-exceptional curve. Then

$$
K_{\tilde{X}}+\tilde{D} \sim_{\mathbb{Q}} \sigma^{*}\left(K_{X}+D\right)+\left(1-\operatorname{mult}_{P}(D)\right) F
$$

where $\tilde{D}$ is the proper transform of the divisor $D$ on the surface $\tilde{X}$.
Remark 2.11. Suppose that $\operatorname{mult}_{P}(D)<2$, the $\log$ pair $(X, D)$ is KLT in a punctured neighborhood of the point $P$, and $(X, D)$ is not KLT at the point $P$. Then there is a point $Q \in F$ such that

$$
\operatorname{LCS}\left(\tilde{X}, \tilde{D}+\left(\operatorname{mult}_{P}(D)-1\right) F\right) \cap F=Q
$$

by Theorem [2.6, which implies that $\operatorname{mult}_{Q}(\tilde{D})+\operatorname{mult}_{P}(D) \geqslant 2$.
Suppose that $X$ is a smooth del Pezzo surface and $D \sim_{\mathbb{Q}}-\lambda K_{X}$ for some $\lambda \in \mathbb{Q}$.

Lemma 2.12. Suppose that $\operatorname{LCS}(X, D)$ is a non-empty finite set. Then

$$
|\operatorname{LCS}(X, D)| \leqslant h^{0}\left(X, \mathcal{O}_{X}\left(-\lceil\lambda-1\rceil K_{X}\right)\right)
$$

and for every point $P \in \operatorname{LCS}(X, D)$ there exists a curve $C \in\left|-\lceil\lambda-1\rceil K_{X}\right|$ such that

$$
\operatorname{LCS}(X, D) \backslash P \subset \operatorname{Supp}(C) \not \supset P .
$$

Proof. The required assertions follow from Theorem 2.5.
Let $G$ be a finite subgroup in $\operatorname{Aut}(X)$ such that the following two conditions are satisfied:

- a $G$-invariant subgroup of the $\operatorname{group} \operatorname{Pic}(X)$ is generated by $-K_{X}$,
- the divisor $D$ is $G$-invariant.

Remark 2.13. If $G$ is Abelian, then $\operatorname{lct}(X, G) \leqslant 1$.
Let $\xi$ be the smallest integer such that $\left|-\xi K_{X}\right|$ contains a $G$-invariant curve.
Lemma 2.14. If $\xi>\lambda$, then $\operatorname{LCS}(X, D)$ is zero-dimensional.
Proof. Suppose that $\operatorname{LCS}(X, D)$ is not zero-dimensional. Then

$$
D=\gamma B+D^{\prime},
$$

where $B$ is a $G$-invariant effective Weil divisor on $X, \gamma$ is a rational number such that $\gamma \geqslant 1$ and $D^{\prime}$ is a $G$-invariant effective $\mathbb{Q}$-divisor $D$ on the surface $X$. We have that

$$
B \sim-n K_{X}
$$

for some positive integer $n$ such that $n \geqslant \xi$. Thus, we see that
$\lambda\left(-K_{X}\right)^{2}=-K_{X} \cdot D=\gamma\left(-K_{X} \cdot B\right)+\left(-K_{X} \cdot D^{\prime}\right) \geqslant \gamma\left(-K_{X} \cdot B\right)=n \gamma\left(-K_{X}\right)^{2} \geqslant \xi\left(-K_{X}\right)^{2}$, which implies that $\xi \leqslant \lambda$.
Corollary 2.15. Let $k$ be the length of the smallest $G$-orbit in $X$. Then $\operatorname{lct}(X, G)=\xi$ if

$$
h^{0}\left(X, \mathcal{O}_{X}\left((1-\xi) K_{X}\right)\right)<k
$$

Corollary 2.16. If $X$ does not contain $G$-fixed points, then $\operatorname{lct}(X, G) \geqslant 1$.
Most of results described in this section are valid in more general settings (see [6]).

## 3. Double quadric cone

Let $X$ be a smooth sextic surface in $\mathbb{P}(1,1,2,3)$. Then $X$ can be given by an equation

$$
t^{2}=z^{3}+z f_{4}(x, y)+f_{6}(x, y) \subset \mathbb{P}(1,1,2,3) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

where $\mathrm{wt}(x)=\mathrm{wt}(y)=1, \operatorname{wt}(z)=2, \mathrm{wt}(t)=3$, and $f_{i}(x, y)$ is a form of degree $i$.
Remark 3.1. It follows from the smoothness of the surface $X$ that

- a common root of the forms $f_{4}(x, y)$ and $f_{6}(x, y)$ is not a multiple root of the form $f_{6}(x, y)$,
- the form $f_{6}(x, y)$ is not a zero form.

Let $\tau$ be the involution in $\operatorname{Aut}(X)$ such that $\tau([x: y: z: t])=[x: y: z:-t]$.
Lemma 3.2 ([5, Lemma 6.18]). A $\tau$-invariant subgroup in $\operatorname{Pic}(X)$ is generated by $-K_{X}$.
Let $G$ be a subgroup in $\operatorname{Aut}(X)$ such that $\tau \in G$. Recall that $\operatorname{Aut}(X)$ is finite.
Lemma 3.3. There exists a $G$-invariant curve in $\left|-2 K_{X}\right|$.
Proof. Let $C$ be the curve on $X$ that is cut out by $z=0$. Then $C$ is $G$-invariant.

Corollary 3.4. The inequality $\operatorname{lct}(X, G) \leqslant 2$ holds.
The main purpose of this section is to prove the following two results.
Theorem 3.5. Suppose that there exists a $G$-invariant curve in $\left|-K_{X}\right|$. Then

$$
\operatorname{lct}(X, G)=\operatorname{lct}_{1}(X, G) \in\{5 / 6,1\}
$$

Proof. If $\operatorname{lct}_{1}(X, G)=5 / 6$, then $\operatorname{lct}(X, G)=5 / 6$ by Example 1.1, since $\operatorname{lct}_{1}(X, G) \in\{5 / 6,1\}$.
Suppose that $\operatorname{lct}(X, G)<\operatorname{lct}_{1}(X, G)=1$. Let us derive a contradiction.
There exists a $G$-invariant effective $\mathbb{Q}$-divisor $D$ on the surface $X$ such that

$$
D \sim_{\mathbb{Q}}-K_{X}
$$

and the $\log$ pair $(X, \lambda D)$ is strictly log canonical for some rational number $\lambda<\operatorname{lct}_{1}(X, G)$.
By Theorem [2.6 and Lemma 2.12, the locus $\operatorname{LCS}(X, \lambda D)$ consists of a single point $P \in X$ such that $P$ is not the base point of the pencil $\left|-K_{X}\right|$. Then $P$ is $G$-invariant.

Let $C$ be the unique curve in the pencil $\left|-K_{X}\right|$ that passes through $P$. Then $C$ is $G$-invariant, and we may assume that $C \nsubseteq \operatorname{Supp}(D)$ (see Remark 2.3). Then

$$
1>\lambda=\lambda D \cdot C \geqslant \lambda \operatorname{mult}_{P}(D)>1
$$

which is a contradiction.
Theorem 3.6. Suppose that there are no $G$-invariant curves in $\left|-K_{X}\right|$. Then

$$
1 \leqslant \operatorname{lct}(X, G)=\operatorname{lct}_{2}(X, G) \leqslant 2
$$

Proof. Arguing as in the proof of Theorem [3.5, we see that $\operatorname{lct}(X, G) \geqslant 1$. Then

$$
1 \leqslant \operatorname{lct}(X, G) \leqslant \operatorname{lct}_{2}(X, G) \leqslant 2
$$

by Corollary 3.4. Suppose that $\operatorname{lct}(X, G)<\operatorname{lct}_{2}(X, G)$. Let us derive a contradiction.
There exists a $G$-invariant effective $\mathbb{Q}$-divisor $D$ on the surface $X$ such that

$$
D \sim_{\mathbb{Q}}-K_{X}
$$

and $(X, \lambda D)$ is strictly $\log$ canonical for some rational number $\lambda<\operatorname{lct}_{2}(X, G)$.
By Lemmata 2.14, 2.12 and 3.2 , the locus $\operatorname{LCS}(X, \lambda D) \neq \varnothing$ consists of exactly two points, which are different from the base point of the pencil $\left|-K_{X}\right|$.

Let $P_{1}$ and $P_{2}$ be two points in $\operatorname{LCS}(X, \lambda D)$. Then

$$
\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D) \geqslant \frac{1}{\lambda}>\frac{1}{2} .
$$

Let $C_{1}$ and $C_{2}$ be the curves in $\left|-K_{X}\right|$ such that $P_{1} \in C_{1}$ and $P_{2} \in C_{2}$. Then

$$
C_{1} \neq C_{2}
$$

by Lemma 2.14. Note that $C_{1}+C_{2}$ is $G$-invariant and $C_{1}+C_{2} \sim-2 K_{X}$.
By Remark [2.3, we may assume that $C_{1}$ and $C_{2}$ are not contained in $\operatorname{Supp}(D)$. Then

$$
2=D \cdot\left(C_{1}+C_{2}\right) \geqslant \sum_{i=1}^{2} \operatorname{mult}_{P_{i}}(D) \operatorname{mult}_{P_{i}}\left(C_{i}\right) \geqslant 2 \operatorname{mult}_{P_{1}}(D)=2 \operatorname{mult}_{P_{2}}(D)>1
$$

which implies that $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D) \leqslant 1$ and $\operatorname{mult}_{P_{1}}\left(C_{1}\right)=\operatorname{mult}_{P_{2}}\left(C_{2}\right)=1$.
Let $\sigma: \bar{X} \rightarrow X$ be the blow-up of the surface $X$ at the points $P_{1}$ and $P_{2}$, let $E_{1}$ and $E_{2}$ be the exceptional curves of the morphism $\sigma$ such that $\sigma\left(E_{1}\right)=P_{1}$ and $\sigma\left(E_{2}\right)=P_{2}$. Then

$$
K_{\bar{X}}+\lambda \bar{D}+\left(\lambda \operatorname{mult}_{P_{1}}(D)-1\right) E_{1}+\left(\lambda \operatorname{mult}_{P_{2}}(D)-1\right) E_{2} \sim_{\mathbb{Q}} \sigma^{*}\left(K_{X}+\lambda D\right)
$$

where $\bar{D}$ is the proper transform of the divisor $D$ on the surface $\bar{X}$.

It follows from Remark 2.11 that there are points $Q_{1} \in E_{1}$ and $Q_{2} \in E_{2}$ such that

$$
\operatorname{LCS}\left(\bar{X}, \lambda \bar{D}+\left(\lambda \operatorname{mult}_{P_{1}}(D)-1\right) E_{1}+\left(\lambda \operatorname{mult}_{P_{2}}(D)-1\right) E_{2}\right)=\left\{Q_{1}, Q_{2}\right\}
$$

as $\lambda \operatorname{mult}_{P_{1}}(D)-1=\lambda \operatorname{mult}_{P_{2}}(D)-1<1$. By Remark [2.11, we have

$$
\begin{equation*}
\operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{Q_{1}}(\bar{D})=\operatorname{mult}_{P_{2}}(D)+\operatorname{mult}_{Q_{2}}(\bar{D}) \geqslant \frac{2}{\lambda}>1 \tag{3.7}
\end{equation*}
$$

Note that the action of the group $G$ on the surface $X$ naturally lifts to an action on $\bar{X}$.
Let $\bar{C}_{1}$ and $\bar{C}_{2}$ be the proper transforms of the curves $C_{1}$ and $C_{2}$ on the surface $\bar{X}$, respectively. Then

$$
1-\operatorname{mult}_{P_{1}}(D)=\bar{C}_{1} \cdot \bar{D} \geqslant \operatorname{mult}_{Q_{1}}\left(\bar{C}_{1}\right) \operatorname{mult}_{Q_{1}}(\bar{D})
$$

which implies that $Q_{1} \notin \bar{C}_{1}$ by (3.7). Similarly, we see that $Q_{2} \notin \bar{C}_{2}$.
Let $R$ be a curve that is cut out on $X$ by $t=0$. Then $P_{1} \in R \ni P_{2}$, since $\tau \in G$.
Let $\bar{R}$ be the proper transform of the curve $R$ on the surface $\bar{X}$. Then

$$
Q_{1}=\bar{R} \cap E_{1},
$$

since $\bar{R} \cap E_{1}$ and $\bar{C}_{1} \cap E_{1}$ are the only $\tau$-fixed points in $E_{1}$. Similarly, we see that $Q_{2}=\bar{R} \cap E_{2}$.
By Remark [2.3, we may assume that $\bar{R} \nsubseteq \operatorname{Supp}(\bar{D})$, since $R$ is smooth. Then

$$
\operatorname{mult}_{Q_{1}}(\bar{D})+\operatorname{mult}_{Q_{2}}(\bar{D}) \leqslant \bar{D} \cdot \bar{R}=3-\operatorname{mult}_{P_{1}}(D)-\operatorname{mult}_{P_{2}}(D)
$$

which implies that $\operatorname{mult}_{Q_{1}}(\bar{D})+\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{Q_{2}}(\bar{D})+\operatorname{mult}_{P_{2}}(D) \leqslant 3 / 2$. Thus, we have

$$
\begin{equation*}
\frac{3}{2} \geqslant \operatorname{mult}_{Q_{1}}(\bar{D})+\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{Q_{2}}(\bar{D})+\operatorname{mult}_{P_{2}}(D) \geqslant \frac{2}{\lambda}>1 \tag{3.8}
\end{equation*}
$$

The linear system $\left|-2 K_{X}\right|$ induces a double cover $\pi: X \rightarrow Q$ that is branched over $\pi(R)$, where $Q$ is an irreducible quadric cone in $\mathbb{P}^{3}$. Let $\Pi_{1}$ and $\Pi_{2}$ be the planes in $\mathbb{P}^{3}$ such that

$$
\pi\left(P_{1}\right) \in \Pi_{1} \cap \Pi_{2} \ni \pi\left(P_{2}\right)
$$

the plane $\Pi_{1}$ is tangent to $\pi(R)$ at $\pi\left(P_{1}\right)$ and $\Pi_{2}$ is tangent to $\pi(R)$ at $\pi\left(P_{2}\right)$. Then

$$
\Pi_{1} \not \not \operatorname{Sing}(Q) \notin \Pi_{2},
$$

since $C_{1}$ and $C_{2}$ are smooth at $P_{1}$ and $P_{2}$ respectively. Then $\Pi_{1} \cap Q$ and $\Pi_{2} \cap Q$ are smooth.
Let $Z_{1}$ and $Z_{2}$ be curves in $\left|-2 K_{X}\right|$ such that $\pi\left(Z_{1}\right)=\Pi_{1} \cap Q$ and $\pi\left(Z_{2}\right)=\Pi_{2} \cap Q$. Then

$$
Z_{1}+Z_{2} \in\left|-4 K_{X}\right|
$$

and the curve $Z_{1}+Z_{2}$ is $G$-invariant. Note that the case $Z_{1}=Z_{2}$ is also possible.
Suppose that $Z_{1}=Z_{2}$. It follows from Remark 2.3 that we may assume that $Z_{1} \not \subset \operatorname{Supp}(D)$, as we have $Z_{1} \in\left|-2 K_{X}\right|$. It should be mentioned (we need this for Corollary 3.12) that either

$$
\left(X, \frac{5}{6} Z_{1}\right)
$$

is strictly $\log$ canonical or the $\log$ pair $\left(X, Z_{1}\right)$ is strictly $\log$ canonical. Then
$2=Z_{1} \cdot D \geqslant \operatorname{mult}_{P_{1}}\left(Z_{1}\right) \operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{P_{2}}\left(Z_{1}\right) \operatorname{mult}_{P_{2}}(D) \geqslant 2 \operatorname{mult}_{P_{1}}(D)+2 \operatorname{mult}_{P_{2}}(D) \geqslant \frac{4}{\lambda}>2$, by (3.7). The obtained contradiction implies that $Z_{1} \neq Z_{2}$.

Note that $\operatorname{mult}_{P_{1}}\left(Z_{1}+Z_{2}\right)=\operatorname{mult}_{P_{1}}\left(Z_{1}+Z_{2}\right)=3$ by construction. Suppose that

$$
\begin{equation*}
\left(X, \frac{\lambda}{4}\left(Z_{1}+Z_{2}\right)\right) \tag{3.9}
\end{equation*}
$$

is KLT. By Remark 2.3, we may assume that $\operatorname{Supp}(D) \cap Z_{1}$ and $\operatorname{Supp}(D) \cap Z_{2}$ are finite subsets.

Let $\bar{Z}_{1}$ and $\bar{Z}_{2}$ be the proper transforms of the curves $Z_{1}$ and $Z_{2}$ on the surface $\bar{X}$, respectively. Then

$$
0 \leqslant \bar{D} \cdot\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=4-3\left(\operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{P_{2}}(D)\right)=4-6 \operatorname{mult}_{P_{1}}(D)=4-6 \operatorname{mult}_{P_{2}}(D)
$$

since $\operatorname{mult}_{P_{1}}\left(Z_{1}+Z_{2}\right)=\operatorname{mult}_{P_{2}}\left(Z_{1}+Z_{2}\right)=3$. Then

$$
\begin{equation*}
\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D) \leqslant \frac{2}{3} . \tag{3.10}
\end{equation*}
$$

Let $\rho: \tilde{X} \rightarrow \bar{X}$ be a blow up of the surface $\bar{X}$ at the points $Q_{1}$ and $Q_{2}$, let $F_{1}$ and $F_{2}$ be the exceptional curves of the morphism $\rho$ such that $\rho\left(F_{1}\right)=Q_{1}$ and $\rho\left(F_{2}\right)=Q_{2}$. Then
$K_{\tilde{X}}+\lambda \tilde{D}+\sum_{i=1}^{2}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) \tilde{E}_{i}+\sum_{i=1}^{2}\left(\lambda \operatorname{mult}_{Q_{i}}(\bar{D})+\lambda \operatorname{mult}_{P_{i}}(D)-2\right) F_{i} \sim_{\mathbb{Q}}(\sigma \circ \rho)^{*}\left(K_{X}+\lambda D\right)$,
where $\tilde{D}$ and $\tilde{E}_{i}$ are proper transforms of the divisors $D$ and $E_{i}$ on the surface $\tilde{X}$, respectively.
It follows from Remark 2.11 that there are points $O_{1} \in F_{1}$ and $O_{2} \in F_{2}$ such that
$\operatorname{LCS}\left(\tilde{X}, \lambda \tilde{D}+\sum_{i=1}^{2}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) \tilde{E}_{i}+\sum_{i=1}^{2}\left(\lambda \operatorname{mult}_{Q_{i}}(\bar{D})+\lambda \operatorname{mult}_{P_{i}}(D)-2\right) F_{i}\right)=\left\{O_{1}, O_{2}\right\}$,
as $\lambda \operatorname{mult}_{Q_{1}}(\bar{D})+\lambda \operatorname{mult}_{P_{1}}(D)-2=\lambda \operatorname{mult}_{Q_{2}}(\bar{D})+\lambda \operatorname{mult}_{P_{2}}(D)-2<1$ by (3.8).
The action of the group $G$ on the surface $\bar{X}$ naturally lifts to an action on $\tilde{X}$ such that the curves $F_{1}$ and $F_{2}$ contain exactly two points that are fixed by $\tau$, respectively.

Let $\tilde{R}$ be the proper transform of the curve $R$ on the surface $\tilde{X}$. Then

- either $O_{1}=\tilde{E}_{1} \cap F_{1}$ and $O_{2}=\tilde{E}_{2} \cap F_{2}$,
- or $O_{1}=\tilde{R} \cap F_{1}$ and $O_{2}=\tilde{R} \cap F_{2}$.

Suppose that $O_{1}=\tilde{E}_{1} \cap F_{1}$ and $O_{2}=\tilde{E}_{2} \cap F_{2}$. It follows from Lemma 2.8 that

$$
2 \lambda \operatorname{mult}_{P_{1}}(D)-2=\left(\lambda \tilde{D}+\left(\lambda \operatorname{mult}_{Q_{1}}(\bar{D})+\lambda \operatorname{mult}_{P_{1}}(D)-2\right) F_{1}\right) \cdot \tilde{E}_{1}>1
$$

which implies that $\operatorname{mult}_{P_{1}}(\underset{\sim}{n})>3 / 4$, which is impossible by (3.10).
Thus, we see that $O_{1}=\tilde{R} \cap F_{1}$ and $O_{2}=\tilde{R} \cap F_{2}$. Then

$$
\operatorname{LCS}\left(\tilde{X}, \lambda \tilde{D}+\sum_{i=1}^{2}\left(\lambda \operatorname{mult}_{Q_{i}}(\bar{D})+\lambda \operatorname{mult}_{P_{i}}(D)-2\right) F_{i}\right)=\left\{O_{1}, O_{2}\right\}
$$

since $O_{1} \notin \tilde{E}_{1}$ and $O_{2} \notin \tilde{E}_{2}$. Then it follows from Remark 2.11 that

$$
\begin{equation*}
\operatorname{mult}_{O_{1}}(\tilde{D})+\operatorname{mult}_{Q_{1}}(\bar{D})+\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{O_{2}}(\tilde{D})+\operatorname{mult}_{Q_{2}}(\bar{D})+\operatorname{mult}_{P_{2}}(D) \geqslant \frac{3}{\lambda} \tag{3.11}
\end{equation*}
$$

as $\lambda \operatorname{mult}_{Q_{i}}(\bar{D})+\lambda \operatorname{mult}_{P_{i}}(D)-2 \geqslant 0$ by (3.8). But
$3-\left(\operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{P_{2}}(D)+\operatorname{mult}_{Q_{1}}(\bar{D})+\operatorname{mult}_{Q_{2}}(\bar{D})\right)=\tilde{R} \cdot \tilde{D} \geqslant \operatorname{mult}_{O_{1}}(\tilde{D})+\operatorname{mult}_{O_{2}}(\tilde{D})$, which contradicts (3.11), since $\lambda<\operatorname{lct}_{2}(X, G) \leqslant 2$.

The obtained contradiction shows that (3.9) is not KLT.
It should be pointed out that we may apply all arguments we already used for our original $\log$ pair $(X, \lambda D)$ to the $\log$ pair (3.9) with one exception: we can not use (3.10). Then

$$
\frac{3}{2} \geqslant \frac{\operatorname{mult}_{Q_{1}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)}{4}+\frac{\operatorname{mult}_{P_{1}}\left(Z_{1}+Z_{2}\right)}{4}=\frac{\operatorname{mult}_{Q_{2}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)}{4}+\frac{\operatorname{mult}_{P_{2}}\left(Z_{1}+Z_{2}\right)}{4} \geqslant \frac{2}{\lambda}>1
$$

by (3.8). But mult $P_{P_{1}}\left(Z_{1}+Z_{2}\right)=\operatorname{mult}_{P_{2}}\left(Z_{1}+Z_{2}\right)=3$. Thus, we see that

$$
3 \geqslant \operatorname{mult}_{Q_{1}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=\operatorname{mult}_{Q_{2}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right) \geqslant \frac{8}{\lambda}-3>1
$$

which implies that one of the following two cases holds:

- either mult $Q_{1}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=\operatorname{mult}_{Q_{2}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=2$,
- or $\operatorname{mult}_{Q_{1}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=\operatorname{mult}_{Q_{2}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=3$.

It follows from the construction of the curves $Z_{1}$ and $Z_{2}$ that

$$
\bar{Z}_{2} \cap E_{1}=\bar{C}_{1} \cap E_{1} \neq Q_{1} \in \bar{R} \ni Q_{2} \neq \bar{C}_{2} \cap E_{2}=\bar{Z}_{1} \cap E_{2}
$$

because $Z_{1}$ is smooth at the point $P_{2}$ and $Z_{2}$ is smooth at the point $P_{1}$. Hence, we must have

$$
\operatorname{mult}_{Q_{1}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=\operatorname{mult}_{Q_{2}}\left(\bar{Z}_{1}+\bar{Z}_{2}\right)=\operatorname{mult}_{Q_{1}}\left(\bar{Z}_{1}\right)=\operatorname{mult}_{Q_{2}}\left(\bar{Z}_{2}\right)=2
$$

as $2=\operatorname{mult}_{P_{1}}\left(Z_{1}\right) \geqslant \operatorname{mult}_{Q_{1}}\left(\bar{Z}_{1}\right)$ and $2=\operatorname{mult}_{P_{2}}\left(Z_{2}\right) \geqslant \operatorname{mult}_{Q_{2}}\left(\bar{Z}_{2}\right)$.
Let $\tilde{Z}_{i}$ be the proper transforms of the curve $Z_{i}$ on the surface $\tilde{X}$. Then

$$
\varnothing \neq \operatorname{LCS}\left(\tilde{X}, \frac{\lambda}{4}\left(\tilde{Z}_{1}+\tilde{Z}_{2}\right)+\frac{3 \lambda-4}{4}\left(\tilde{E}_{1}+\tilde{E}_{2}\right)+\frac{5 \lambda-8}{4}\left(F_{1}+F_{2}\right)\right) \subsetneq F_{1} \cup F_{2}
$$

since $3 \lambda / 4-1<1$ and $5 \lambda / 4-2<1$. On the other hand, we know that

$$
\tilde{Z}_{1} \cap \tilde{E}_{1}=\varnothing=\tilde{Z}_{2} \cap \tilde{E}_{2}
$$

as we have $\operatorname{mult}_{P_{1}}\left(Z_{1}\right)=\operatorname{mult}_{Q_{1}}\left(\bar{Z}_{1}\right)$ and mult $P_{2}\left(Z_{2}\right)=\operatorname{mult}_{Q_{2}}\left(\bar{Z}_{2}\right)$. Then

$$
\operatorname{LCS}\left(\tilde{X}, \frac{\lambda}{4}\left(\tilde{Z}_{1}+\tilde{Z}_{2}\right)+\frac{5 \lambda-8}{4}\left(F_{1}+F_{2}\right)\right)=\left\{\tilde{R} \cap F_{1}, \tilde{R} \cap F_{2}\right\}
$$

We can put $O_{1}=\tilde{R} \cap F_{1}$ and $O_{2}=\tilde{R} \cap F_{i}$. Since $5 \lambda / 4-2 \geqslant 0$, we must have

$$
\frac{\lambda}{4} \operatorname{mult}_{O_{1}}\left(\tilde{Z}_{1}\right)+\frac{5 \lambda-8}{4}=\frac{\lambda}{4} \operatorname{mult}_{O_{2}}\left(\tilde{Z}_{2}\right)+\frac{5 \lambda-8}{4} \geqslant 1
$$

which implies that $\operatorname{mult}_{O_{1}}\left(\tilde{Z}_{1}\right) \geqslant 12 / \lambda-5$ and $\operatorname{mult}_{O_{2}}\left(\tilde{Z}_{2}\right) \geqslant 12 / \lambda-5$. Whence

$$
2=\tilde{R} \cdot\left(\tilde{Z}_{1}+\tilde{Z}_{2}\right) \geqslant \operatorname{mult}_{O_{1}}\left(\tilde{Z}_{1}\right)+\operatorname{mult}_{O_{2}}\left(\tilde{Z}_{2}\right) \geqslant \frac{24}{\lambda}-10>2
$$

as $\lambda<2$. The obtained contradiction implies that (3.9) is KLT. In fact, we proved that

$$
\left(X, \frac{1}{2}\left(Z_{1}+Z_{2}\right)\right)
$$

is log canonical (this is only important for Corollary 3.12).
Arguing as in the proof of Theorem 3.6, we obtain the following two corollaries.
Corollary 3.12. If there are no $G$-invariant curves in $\left|-K_{X}\right|$, then $\operatorname{lct}(X, G) \in\{5 / 3,2\}$.
Corollary 3.13. We have $\operatorname{lct}(X, G) \in\{5 / 6,1,5 / 3,2\}$.
Using description of the group $\operatorname{Aut}(X)$ (see [5]), we obtain the following result.
Corollary 3.14. The following conditions are equivalent:

- the inequality $\operatorname{lct}(X, \operatorname{Aut}(X))>1$ holds,
- either $\operatorname{lct}(X, \operatorname{Aut}(X))=5 / 3$ or $\operatorname{lct}(X, \operatorname{Aut}(X))=2$,
- the pencil $\left|-K_{X}\right|$ does not contain $G$-invariant curves,
- the group $\operatorname{Aut}(X)$ is not Abelian.

Let us show how to compute $\operatorname{lct}(X, G)$ in one case.

Lemma 3.15. If $f_{4}(x, y)=x^{2} y^{2}$ and $f_{6}(x, y)=x^{6}+y^{6}+x^{3} y^{3}$, then lct $(X, \operatorname{Aut}(X))=2$. Proof. Suppose that $f_{4}(x, y)=x^{2} y^{2}$ and $f_{6}(x, y)=x^{6}+y^{6}+x^{3} y^{3}$. By [5], we have

$$
\operatorname{Aut}(X) \cong \mathbb{D}_{6}
$$

and all $\operatorname{Aut}(X)$-invariant curves in $\left|-2 K_{X}\right|$ can be described as follows:

- an irreducible curve that is cut out on $X$ by $z=0$ (see the proof of Lemma 3.3),
- a reducible curve that is cut out on $X$ by $x y=0$,
- a reducible curve that is cut out on $X$ by $x^{2}+y^{2}=0$,
- a reducible curve that is cut out on $X$ by $x^{2}-y^{2}=0$.

One can show that $\operatorname{Aut}(X)$-invariant curves in $\left|-2 K_{X}\right|$ have at most ordinary double points, which implies that $\operatorname{lct}(X, \operatorname{Aut}(X))=2$ by Theorem 3.6.

## 4. Double plane Ramified in quartic

Let $X$ be a smooth quartic surface in $\mathbb{P}(1,1,1,2)$. Then $X$ can be given by an equation

$$
t^{2}=f_{4}(x, y, z) \subset \mathbb{P}(1,1,1,2) \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

where $\mathrm{wt}(x)=\mathrm{wt}(y)=\mathrm{wt}(z)=1, \mathrm{wt}(t)=2$, and $f_{4}(x, y, z)$ is a form of degree 4 .
Let $\tau$ be the involution in $\operatorname{Aut}(X)$ such that $\tau([x: y: z: t])=[x: y: z:-t]$.
Lemma 4.1 ([5, Theorem 6.17]). A $\tau$-invariant subgroup in $\operatorname{Pic}(X)$ is generated by $-K_{X}$.
Let $G$ be a subgroup in $\operatorname{Aut}(X)$ such that $\tau \in G$. Recall that $\operatorname{Aut}(X)$ is finite.
Lemma 4.2. There exists a $G$-invariant curve in $\left|-2 K_{X}\right|$.
Proof. Let $R$ be the curve on $X$ that is cut out by $t=0$. Then $R$ is $G$-invariant.
Corollary 4.3. The inequality $\operatorname{lct}(X, G) \leqslant 2$ holds.
The main purpose of this section is to prove the following two results.
Theorem 4.4. Suppose that there exists a $G$-invariant curve in $\left|-K_{X}\right|$. Then

$$
\operatorname{lct}(X, G)=\operatorname{lct}_{1}(X, G) \in\{3 / 4,5 / 6,1\}
$$

Proof. One can easily check that $\operatorname{lct}_{1}(X, G) \in\{3 / 4,5 / 6,1\}$. It follows from Example 1.1 that

$$
\operatorname{lct}(X, G)=\operatorname{lct}_{1}(X, G)=\frac{3}{4}
$$

if $\operatorname{lct}_{1}(X, G)=3 / 4$. Suppose that $\operatorname{lct}(X, G)<\operatorname{lct}_{1}(X, G)$. Let us derive a contradiction.
There exists a $G$-invariant effective $\mathbb{Q}$-divisor $D$ on the surface $X$ such that

$$
D \sim_{\mathbb{Q}}-K_{X}
$$

and the $\log$ pair $(X, \lambda D)$ is strictly $\log$ canonical for some rational number $\lambda<\operatorname{lct}_{1}(X, G)$.
By Theorem 2.6 and Lemma 2.12, the locus $\operatorname{LCS}(X, \lambda D)$ consists of a single point $P \in X$.
Let $R$ be the curve on $X$ that is cut out by $t=0$. Then $P \in R$, since $\tau \in G$.
Let $L$ be the unique curve in $\left|-K_{X}\right|$ such that $L$ is singular at the point $P$. Then we may assume that $\operatorname{Supp}(D)$ does not contain any component of the curve $L$ by Remark 2.3, Then

$$
2=L \cdot D \geqslant \operatorname{mult}_{P}(L) \cdot \operatorname{mult}_{P}(D) \geqslant 2 \operatorname{mult}_{P}(D) \geqslant \frac{2}{\lambda}>1
$$

which is a contradiction.
Theorem 4.5. Suppose that there are no $G$-invariant curves in $\left|-K_{X}\right|$. Then

$$
1 \leqslant \operatorname{lct}(X, G)=\min \left(\operatorname{lct}_{2}(X, G), \operatorname{lct}_{3}(X, G)\right) \leqslant 2
$$

Proof. Arguing as in the proof of Theorem 4.4 and using Corollary 4.3, we have

$$
1 \leqslant \operatorname{lct}(X, G) \leqslant \operatorname{lct}_{2}(X, G) \leqslant 2
$$

Suppose that $\operatorname{lct}(X, G)<\operatorname{lct}_{2}(X, G)$ and $\operatorname{lct}(X, G)<\operatorname{lct}_{3}(X, G)$. Let us derive a contradiction.
There exists a $G$-invariant effective $\mathbb{Q}$-divisor $D$ on the surface $X$ such that

$$
D \sim_{\mathbb{Q}}-K_{X}
$$

and $(X, \lambda D)$ is strictly $\log$ canonical for some $\lambda \in \mathbb{Q}$ such that $\lambda<\operatorname{lct}_{2}(X, G)$ and $\lambda<\operatorname{lct}_{3}(X, G)$.
Let $R$ be the curve on $X$ that is cut out by $t=0$. It follows from Lemmata 2.14 and 4.1 that

$$
\operatorname{LCS}(X, \lambda D) \subset R,
$$

and it follows from Lemma 2.12 that $|\operatorname{LCS}(X, \lambda D)|=3$.
Let $P_{1}, P_{2}, P_{3}$ be three points in $\operatorname{LCS}(X, \lambda D)$. Then

$$
\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D) \geqslant \frac{1}{\lambda}>\frac{1}{2} .
$$

Let $\pi: X \rightarrow \mathbb{P}^{2}$ be a natural projection. Then $\pi$ is a double cover ramified over the curve $\pi(R)$ and the points $\pi\left(P_{1}\right), \pi\left(P_{2}\right), \pi\left(P_{3}\right)$ are not contained in one line by Lemma 2.12,

Let $L_{1}, L_{2}, L_{3}$ be curves in $\left|-K_{X}\right|$ such that $P_{2} \in L_{1} \ni P_{3}, P_{1} \in L_{2} \ni P_{3}, P_{1} \in L_{3} \ni P_{2}$. Then

$$
L_{1}+L_{2}+L_{3} \sim-3 K_{X}
$$

and the divisor $L_{1}+L_{2}+L_{3}$ is $G$-invariant. We may assume that $\operatorname{Supp}(D)$ does not contain any components of the curves $L_{1}, L_{2}, L_{3}$ by Remark [2.3. Using [6, Proposition 8.21], we see that

$$
\begin{equation*}
\left(X, \frac{5}{8}\left(L_{1}+L_{2}+L_{3}\right)\right) \tag{4.6}
\end{equation*}
$$

is $\log$ canonical (this is only important for Corollary 4.13). In fact, one can show that

$$
\left(X, \frac{2}{3}\left(L_{1}+L_{2}+L_{3}\right)\right)
$$

is $\log$ canonical $\Longleftrightarrow$ (4.6) is KLT. Note that $\pi\left(L_{1}\right), \pi\left(L_{2}\right), \pi\left(L_{3}\right)$ are lines. We have

$$
6=D \cdot\left(L_{1}+L_{2}+L_{3}\right) \geqslant 2 \sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(D)=6 \operatorname{mult}_{P_{1}}(D)=6 \operatorname{mult}_{P_{2}}(D)=6 \operatorname{mult}_{P_{3}}(D),
$$

which implies that $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D) \leqslant 1$.
Let $T_{1}, T_{2}, T_{3}$ be the curves in $\left|-K_{X}\right|$ that are singular at $P_{1}, P_{2}, P_{3}$, respectively. Then

$$
T_{1}+T_{2}+T_{3} \sim-3 K_{X}
$$

and the divisor $T_{1}+T_{2}+T_{3}$ is $G$-invariant. We may assume that $\operatorname{Supp}(D)$ does not contain any components of the curves $T_{1}, T_{2}, T_{3}$ by Remark [2.3. Using [6, Proposition 8.21], we see that

$$
\begin{equation*}
\left(X, \frac{5}{8}\left(T_{1}+T_{2}+T_{3}\right)\right) \tag{4.7}
\end{equation*}
$$

is log canonical (this is only important for Corollary 4.13). Moreover, one can show that

$$
\left(X, \frac{2}{3}\left(T_{1}+T_{2}+T_{3}\right)\right)
$$

is $\log$ canonical $\Longleftrightarrow(4.7)$ is $\mathrm{KLT} \Longleftrightarrow T_{1}+T_{2}+T_{3} \neq L_{1}+L_{2}+L_{3}$.
Note that $\pi\left(T_{1}\right), \pi\left(T_{2}\right), \pi\left(T_{3}\right)$ are lines tangent to $\pi(R)$ at $\pi\left(P_{1}\right), \pi\left(P_{2}\right), \pi\left(P_{3}\right)$, respectively.

If $T_{1}+T_{2}+T_{3}=L_{1}+L_{2}+L_{3}$, then $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D) \leqslant 2 / 3$, since

$$
6=D \cdot\left(L_{1}+L_{2}+L_{3}\right) \geqslant 3 \sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(D)=9 \operatorname{mult}_{P_{1}}(D)=9 \operatorname{mult}_{P_{2}}(D)=9 \operatorname{mult}_{P_{3}}(D)
$$

Let $Z_{1}, Z_{2}$ and $Z_{3}$ be a curves in $\left|-2 K_{X}\right|$ such that $\pi\left(Z_{1}\right), \pi\left(Z_{2}\right), \pi\left(Z_{3}\right)$ are conics where

$$
\left\{\pi\left(P_{1}\right), \pi\left(P_{2}\right), \pi\left(P_{3}\right)\right\} \subset \pi\left(Z_{1}\right) \cap \pi\left(Z_{2}\right) \cap \pi\left(Z_{3}\right)
$$

the conic $\pi\left(Z_{1}\right)$ is tangent to $\pi(R)$ at $\pi\left(P_{2}\right)$ and $\pi\left(P_{3}\right)$, the conic $\pi\left(Z_{2}\right)$ is tangent to $\pi(R)$ at the points $\pi\left(P_{1}\right)$ and $\pi\left(P_{3}\right)$, and $\pi\left(Z_{3}\right)$ is tangent to $\pi(R)$ at $\pi\left(P_{1}\right)$ and $\pi\left(P_{2}\right)$. Then

$$
Z_{1}+Z_{2}+Z_{3}=2\left(T_{1}+T_{2}+T_{3}\right) \Longleftrightarrow T_{1}+T_{2}+T_{3}=L_{1}+L_{2}+L_{3}
$$

and the conics $\pi\left(Z_{1}\right), \pi\left(Z_{2}\right), \pi\left(Z_{3}\right)$ are irreducible $\Longleftrightarrow T_{1}+T_{2}+T_{3} \neq L_{1}+L_{2}+L_{3}$. Then

$$
\left(X, \frac{1}{3}\left(Z_{1}+Z_{2}+Z_{3}\right)\right)
$$

is $\log$ canonical if $T_{1}+T_{2}+T_{3} \neq L_{1}+L_{2}+L_{3}$ (see Example 2.4 and [6, Proposition 8.21]). However

$$
Z_{1}+Z_{2}+Z_{3} \sim-6 K_{X}
$$

and the divisor $Z_{1}+Z_{2}+Z_{3}$ is $G$-invariant. Thus, we may assume that $\operatorname{Supp}(D)$ does not contain any components of the curves $Z_{1}, Z_{2}, Z_{3}$ by Remark [2.3. Then

$$
12=D \cdot\left(Z_{1}+Z_{2}+Z_{3}\right) \geqslant 5 \sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(D)=15 \operatorname{mult}_{P_{1}}(D)=15 \operatorname{mult}_{P_{2}}(D)=15 \operatorname{mult}_{P_{3}}(D),
$$

which implies that $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D) \leqslant 4 / 5$. If $Z_{1}=Z_{2}=Z_{3}$, then

$$
4=D \cdot Z_{1}=D \cdot Z_{2}=D \cdot Z_{3} \geqslant 2 \sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(D)=6 \operatorname{mult}_{P_{1}}(D)=6 \operatorname{mult}_{P_{2}}(D)=6 \operatorname{mult}_{P_{3}}(D)
$$

which implies that $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D) \leqslant 2 / 3$.
Let $\sigma: \bar{X} \rightarrow X$ be the blow-up of the surface $X$ at $P_{1}, P_{2}$ and $P_{3}$, let $E_{1}, E_{2}$ and $E_{3}$ be the exceptional curves of the blow up $\sigma$ such that $\sigma\left(E_{1}\right)=P_{1}, \sigma\left(E_{2}\right)=P_{2}$ and $\sigma\left(E_{3}\right)=P_{3}$. Then

$$
K_{\bar{X}}+\lambda \bar{D}+\sum_{i=1}^{3}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) E_{i} \sim_{\mathbb{Q}} \sigma^{*}\left(K_{X}+\lambda D\right)
$$

where $\bar{D}$ is the proper transform of the divisor $D$ on the surface $\bar{X}$.
It follows from Remark [2.11] that there are points $Q_{1} \in E_{1}, Q_{2} \in E_{2}$ and $Q_{3} \in E_{3}$ such that

$$
\operatorname{LCS}\left(\bar{X}, \lambda \bar{D}+\sum_{i=1}^{3}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) E_{i}\right)=\left\{Q_{1}, Q_{2}, Q_{3}\right\}
$$

as $\lambda \operatorname{mult}_{P_{1}}(D)-1=\lambda \operatorname{mult}_{P_{2}}(D)-1=\lambda \operatorname{mult}_{P_{3}}(D)-1<1$. By Remark 2.11, we have

$$
\begin{equation*}
\operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{Q_{1}}(\bar{D})=\operatorname{mult}_{P_{2}}(D)+\operatorname{mult}_{Q_{2}}(\bar{D})=\operatorname{mult}_{P_{3}}(D)+\operatorname{mult}_{Q_{3}}(\bar{D}) \geqslant \frac{2}{\lambda}>1 \tag{4.8}
\end{equation*}
$$

where $\operatorname{mult}_{Q_{1}}(\bar{D})=\operatorname{mult}_{Q_{2}}(\bar{D})=\operatorname{mult}_{Q_{3}}(\bar{D})$, since the divisor $D$ is $G$-invariant.
Note that the action of the group $G$ on the surface $X$ naturally lifts to an action on $\bar{X}$.
Since the line $\pi\left(L_{1}\right)$ is not tangent to $\pi(R)$ at both $\pi\left(P_{2}\right)$ and $\pi\left(P_{3}\right)$, without loss of generality, we may assume that $\pi\left(L_{1}\right)$ intersects transversally $\pi(R)$ at $\pi\left(P_{2}\right)$. Similarly, we may assume that

- the line $\pi\left(L_{2}\right)$ intersects transversally the curve $\pi(R)$ at the point $\pi\left(P_{3}\right)$,
- the line $\pi\left(L_{3}\right)$ intersects transversally the curve $\pi(R)$ at the point $\pi\left(P_{1}\right)$.

Let $\bar{L}_{1}, \bar{L}_{2}, \bar{L}_{3}$ be the proper transforms of the curves $L_{1}, L_{2}, L_{3}$ on the surface $\bar{X}$, respectively. Then

$$
2-\sum_{i=2}^{3} \operatorname{mult}_{P_{i}}\left(L_{1}\right) \operatorname{mult}_{P_{i}}(D)=\bar{L}_{1} \cdot \bar{D} \geqslant \sum_{i=2}^{3} \operatorname{mult}_{Q_{i}}\left(\bar{L}_{1}\right) \operatorname{mult}_{Q_{i}}(\bar{D})
$$

which implies that $Q_{2} \notin \bar{L}_{1}$ by (4.8). Similarly, we see that $Q_{3} \notin \bar{L}_{2}$ and $Q_{1} \notin \bar{L}_{3}$.
Let $\bar{R}$ be the proper transform of the curve $R$ on the surface $\bar{X}$. Then

$$
Q_{1}=\bar{R} \cap E_{1}
$$

since the $\sigma$-exceptional curve $E_{1}$ contains exactly two points that are fixed by the involution $\tau$, which are $\bar{R} \cap E_{1}$ and $\bar{L}_{3} \cap E_{1}$. Similarly, we see that $Q_{2}=\bar{R} \cap E_{2}$ and $Q_{3}=\bar{R} \cap E_{3}$.

By Remark 2.3, we may assume that $\bar{R} \nsubseteq \operatorname{Supp}(\bar{D})$, since $R$ is smooth. Then

$$
\sum_{i=1}^{3} \operatorname{mult}_{Q_{i}}(\bar{D}) \leqslant \bar{D} \cdot \bar{R}=4-\sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(D)
$$

where $_{\operatorname{mult}_{Q_{1}}}(\bar{D})+\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{Q_{2}}(\bar{D})+\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{Q_{3}}(\bar{D})+\operatorname{mult}_{P_{3}}(D)$. Then

$$
\begin{equation*}
\operatorname{mult}_{Q_{1}}(\bar{D})+\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{Q_{2}}(\bar{D})+\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{Q_{3}}(\bar{D})+\operatorname{mult}_{P_{3}}(D) \leqslant \frac{4}{3} \tag{4.9}
\end{equation*}
$$

Let $\rho: \tilde{X} \rightarrow \bar{X}$ be a blow up of the surface $\bar{X}$ at the points $Q_{1}, Q_{2}, Q_{3}$ and let $F_{1}, F_{2}$ and $F_{3}$ be the exceptional curves of the blow up $\rho$ such that $\rho\left(F_{1}\right)=Q_{1}, \rho\left(F_{2}\right)=Q_{2}$ and $\rho\left(F_{2}\right)=Q_{3}$. Then $K_{\tilde{X}}+\lambda \tilde{D}+\sum_{i=1}^{3}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) \tilde{E}_{i}+\sum_{i=1}^{3}\left(\lambda \operatorname{mult}_{Q_{i}}(\bar{D})+\lambda \operatorname{mult}_{P_{i}}(D)-2\right) F_{i} \sim_{\mathbb{Q}}(\sigma \circ \rho)^{*}\left(K_{X}+\lambda D\right)$, where $\tilde{D}$ and $\tilde{E}_{i}$ are proper transforms of the divisors $D$ and $E_{i}$ on the surface $\tilde{X}$, respectively.

It follows from Remark 2.11 that there are points $O_{1} \in F_{1}, O_{2} \in F_{2}$ and $O_{3} \in F_{3}$ such that
$\operatorname{LCS}\left(\tilde{X}, \lambda \tilde{D}+\sum_{i=1}^{3}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) \tilde{E}_{i}+\sum_{i=1}^{3}\left(\lambda \operatorname{mult}_{Q_{i}}(\bar{D})+\lambda \operatorname{mult}_{P_{i}}(D)-2\right) F_{i}\right)=\left\{O_{1}, O_{2}, O_{3}\right\}$,
since $\operatorname{mult}_{Q_{1}}(\bar{D})+\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{Q_{2}}(\bar{D})+\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{Q_{3}}(\bar{D})+\operatorname{mult}_{P_{3}}(D) \leqslant 4 / 3$.
The action of the group $G$ on the surface $\bar{X}$ naturally lifts to an action on the surface $\tilde{X}$ such that every curve among the curves $F_{1}, F_{2}$ and $F_{3}$ contain exactly two $\tau$-fixed points.

Let $\tilde{R}$ be the proper transform of the curve $R$ on the surface $\tilde{X}$. Then

- either $O_{1}=\tilde{E}_{1} \cap F_{1}, O_{2}=\tilde{E}_{2} \cap F_{2}$ and $O_{3}=\tilde{E}_{3} \cap F_{3}$,
- or $O_{1}=\tilde{R} \cap F_{1}, O_{2}=\tilde{R} \cap F_{2}$ and $O_{3}=\tilde{R} \cap F_{3}$.

Suppose that $O_{1}=\tilde{R} \cap F_{1}, O_{2}=\tilde{R} \cap F_{2}$ and $O_{3}=\tilde{R} \cap F_{3}$. Then

$$
\operatorname{LCS}\left(\tilde{X}, \lambda \tilde{D}+\sum_{i=1}^{3}\left(\lambda \operatorname{mult}_{Q_{i}}(\bar{D})+\lambda \operatorname{mult}_{P_{i}}(D)-2\right) F_{i}\right)=\left\{O_{1}, O_{2}, O_{3}\right\}
$$

since $O_{1} \notin \tilde{E}_{1}, O_{2} \notin \tilde{E}_{2}$ and $O_{3} \notin \tilde{E}_{3}$. Then it follows from Remark 2.11 that

$$
\begin{equation*}
\operatorname{mult}_{O_{i}}(\tilde{D})+\operatorname{mult}_{Q_{i}}(\bar{D})+\operatorname{mult}_{P_{i}}(D) \geqslant \frac{3}{\lambda}>\frac{3}{2} \tag{4.10}
\end{equation*}
$$

for every $i \in\{1,2,3\}$, where $\operatorname{mult}_{O_{1}}(\tilde{D})=\operatorname{mult}_{O_{2}}(\tilde{D})=\operatorname{mult}_{O_{2}}(\tilde{D})$. However

$$
4-\sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(D)+\sum_{i=1}^{3} \operatorname{mult}_{Q_{i}}(\bar{D})=\tilde{R} \cdot \tilde{D} \geqslant \sum_{i=1}^{3} \operatorname{mult}_{O_{i}}(\tilde{D})
$$

which contradicts (4.10). Thus, we see that $O_{1}=\tilde{E}_{1} \cap F_{1}, O_{2}=\tilde{E}_{2} \cap F_{2}$ and $O_{3}=\tilde{E}_{3} \cap F_{3}$.

If $6\left(\lambda \operatorname{mult}_{P_{1}}(D)-1\right)+\left(\lambda \operatorname{mult}_{Q_{1}}(\bar{D})+\lambda\right.$ mult $\left._{P_{1}}(D)-2\right)<4$, then we can apply Corollary 2.10 to

$$
\left(\tilde{X}, \lambda \tilde{D}+\left(\lambda \operatorname{mult}_{P_{1}}(D)-1\right) \tilde{E}_{1}+\left(\lambda \operatorname{mult}_{Q_{1}}(\bar{D})+\lambda \operatorname{mult}_{P_{1}}(D)-2\right) F_{1}\right)
$$

which immediately gives a contradiction, because

$$
\lambda \tilde{D} \cdot F_{1}=\lambda \operatorname{mult}_{Q_{1}}(\bar{D}) \leqslant 1+\frac{3}{2}\left(\lambda \operatorname{mult}_{Q_{1}}(\bar{D})+\lambda \operatorname{mult}_{P_{1}}(D)-2\right)-\left(\lambda \operatorname{mult}_{P_{1}}(D)-1\right)
$$

and $\lambda \tilde{D} \cdot \tilde{E}_{1}=2\left(\lambda \operatorname{mult}_{P_{1}}(D)-1\right)-\left(\lambda \operatorname{mult}_{Q_{1}}(\bar{D})+\lambda \operatorname{mult}_{P_{1}}(D)-2\right)$. Hence

$$
6\left(\lambda \operatorname{mult}_{P_{1}}(D)-1\right)+\left(\lambda \operatorname{mult}_{Q_{1}}(\bar{D})+\lambda \operatorname{mult}_{P_{1}}(D)-2\right) \geqslant 4
$$

which implies that $7 \operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{Q_{1}}(\bar{D}) \geqslant 12 / \lambda$. Similarly,

$$
\begin{equation*}
7 \operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{Q_{1}}(\bar{D})=7 \operatorname{mult}_{P_{2}}(D)+\operatorname{mult}_{Q_{2}}(\bar{D})=7 \operatorname{mult}_{P_{3}}(D)+\operatorname{mult}_{Q_{3}}(\bar{D}) \geqslant \frac{12}{\lambda} \tag{4.11}
\end{equation*}
$$

which implies that $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D)>7 / 9$ by (4.9). Then

$$
T_{1}+T_{2}+T_{3} \neq L_{1}+L_{2}+L_{3}
$$

since $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D) \leqslant 2 / 3$ if $T_{1}+T_{2}+T_{3}=L_{1}+L_{2}+L_{3}$. We have

$$
Z_{1} \neq Z_{2} \neq Z_{3} \neq Z_{1}
$$

since $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D) \leqslant 2 / 3$ if $Z_{1}=Z_{2}=Z_{3}$.
Let $\mathcal{M}$ be linear subsystem in $\left|-3 K_{X}\right|$ such that $M \in \mathcal{M}$ if $\pi(M)$ is a cubic curve such that

$$
\left\{\pi\left(P_{1}\right), \pi\left(P_{2}\right), \pi\left(P_{3}\right)\right\} \subset \pi(M)
$$

and $\pi(M)$ is tangent to $\pi(R)$ at the points $\pi\left(P_{1}\right), \pi\left(P_{2}\right)$ and $\pi\left(P_{3}\right)$. Then

$$
T_{1}+T_{2}+T_{3} \in \mathcal{M} \ni L_{1}+L_{2}+L_{3}
$$

and every curve in $\mathcal{M}$ is singular at the points $P_{1}, P_{2}$ and $P_{3}$. Note that $\operatorname{dim}(\mathcal{M}) \geqslant 3$.
Let $\overline{\mathcal{M}}$ be the proper transform of the linear system $\mathcal{M}$ on the surface $\bar{X}$. Then

$$
\overline{\mathcal{M}} \sim \sigma^{*}\left(-3 K_{X}\right)-\sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(\mathcal{M}) E_{3}
$$

where $\operatorname{mult}_{P_{1}}(\mathcal{M})=\operatorname{mult}_{P_{2}}(\mathcal{M})=\operatorname{mult}_{P_{3}}(\mathcal{M}) \geqslant 2$.
Let $\overline{\mathcal{B}}$ be a linear subsystem of the linear system $\overline{\mathcal{M}}$ consisting of curves that pass through the points $Q_{1}, Q_{2}$ and $Q_{3}$. Then $\overline{\mathcal{B}} \neq \varnothing$, since $\operatorname{dim}(\mathcal{M}) \geqslant 3$. Put $\mathcal{B}=\sigma(\overline{\mathcal{B}})$. Then

$$
\overline{\mathcal{B}} \sim \sigma^{*}\left(-3 K_{X}\right)-\sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(\mathcal{B}) E_{3},
$$

$\operatorname{where}_{\operatorname{mult}_{P_{1}}}(\mathcal{B})=\operatorname{mult}_{P_{2}}(\mathcal{B})=\operatorname{mult}_{P_{3}}(\mathcal{B}) \geqslant \operatorname{mult}_{P_{1}}(\mathcal{M})=\operatorname{mult}_{P_{2}}(\mathcal{M})=\operatorname{mult}_{P_{3}}(\mathcal{M}) \geqslant 2$.
Note that the linear systems $\mathcal{M}, \overline{\mathcal{B}}$ and $\mathcal{B}$ are $G$-invariant.
Let $B$ be a general curve in the linear system $\mathcal{B}$. Since $\left|-K_{X}\right|$ contains no $G$-invariant curves, we see that either $\mathcal{B}=B$ or $\mathcal{B}$ has no fixed curves. If $\mathcal{B}=B$, then $B$ is $G$-invariant and

$$
\begin{equation*}
\left(X, \frac{\lambda}{3} B\right) \tag{4.12}
\end{equation*}
$$

is $\log$ canonical. Indeed, if the log pair (4.12) is not log canonical, then

$$
3>\operatorname{mult}_{P_{1}}(B)>\frac{7}{3}>2,
$$

because we can apply the arguments we used for $(X, \lambda D)$ to the log pair (4.12).

We may assume that $B$ is not contained in $\operatorname{Supp}(D)$ by Remark 2.3. Then
$6=B \cdot D \geqslant \sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(B) \operatorname{mult}_{P_{i}}(D)>\frac{7}{9} \sum_{i=1}^{3} \operatorname{mult}_{P_{i}}(B)=\frac{7}{3} \operatorname{mult}_{P_{1}}(B)=\frac{7}{3} \operatorname{mult}_{P_{2}}(B)=\frac{7}{3} \operatorname{mult}_{P_{1}}(B)$,
which implies that $\operatorname{mult}_{P_{1}}(B)=\operatorname{mult}_{P_{2}}(B)=\operatorname{mult}_{P_{3}}(B)=2$.
Let $\bar{B}$ be the proper transform of the curve $B$ on the surface $\bar{X}$. Then $\bar{B} \in \overline{\mathcal{B}}$ and
$6-6 \operatorname{mult}_{P_{1}}(D)=\bar{B} \cdot \bar{D} \geqslant \sum_{i=1}^{3} \operatorname{mult}_{Q_{i}}(\bar{B}) \operatorname{mult}_{Q_{i}}(\bar{D}) \geqslant 3 \operatorname{mult}_{Q_{1}}(\bar{D})=3 \operatorname{mult}_{Q_{2}}(\bar{D})=3 \operatorname{mult}_{Q_{3}}(\bar{D})$,
which implies that $2 \operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{Q_{1}}(\bar{D}) \leqslant 2$. By (4.11), we have

$$
5 \operatorname{mult}_{P_{1}}(D)+2 \geqslant 7 \operatorname{mult}_{P_{1}}(D)+\operatorname{mult}_{Q_{1}}(\bar{D}) \geqslant \frac{12}{\lambda}>6
$$

which implies that $\operatorname{mult}_{P_{1}}(D)>4 / 5$. But we already proved that $\operatorname{mult}_{P_{1}}(D) \leqslant 4 / 5$.
Arguing as in the proof of Theorem 4.5, we obtain the following two corollaries.
Corollary 4.13. If there are no $G$-invariant curves in $\left|-K_{X}\right|$, then $\operatorname{lct}(X, G) \in\{15 / 8,2\}$.
Corollary 4.14. The equality $\operatorname{lct}(X, G)=2$ holds if the following two conditions are satisfied:

- the linear system $\left|-K_{X}\right|$ does not contain $G$-invariant curves,
- the surface $X$ does not have $G$-orbits of length 3 .

Corollary 4.15. We have $\operatorname{lct}(X, G) \in\{3 / 4,5 / 6,1,15 / 8,2\}$.
Using description of the group $\operatorname{Aut}(X)$ (see [5]), we obtain the following result.
Corollary 4.16. The following conditions are equivalent:

- the inequality $\operatorname{lct}(X, \operatorname{Aut}(X))>1$ holds,
- the equality $\operatorname{lct}(X, \operatorname{Aut}(X))=2$ holds,
- the linear system $\left|-K_{X}\right|$ does not contain $\operatorname{Aut}(X)$-invariant curves,
- the group $\operatorname{Aut}(X)$ is isomorphic to one of the following groups:

$$
\mathbb{S}_{4} \times \mathbb{Z}_{2},\left(\mathbb{Z}_{4}^{2} \rtimes \mathbb{S}_{3}\right) \times \mathbb{Z}_{2}, \mathbb{P S L}\left(2, \mathbb{F}_{7}\right) \times \mathbb{Z}_{2}
$$

Let us show how to compute $\operatorname{lct}(X, G)$ in two cases.
Lemma 4.17. Suppose that $f_{4}(x, y, z)=x^{3} y+y^{3} z+z^{3} x$ and $G \cong \mathbb{Z}_{2} \times\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right)$. Then

$$
\operatorname{lct}(X, G)=\operatorname{lct}_{3}(X, G)=\frac{15}{8}<\operatorname{lct}_{2}(X, G)=2
$$

Proof. One can easily check that the linear system $\left|-K_{X}\right|$ does not contain $G$-invariant curves, and the only $G$-invariant curve in $\left|-2 K_{X}\right|$ is a curve that is cut out on $X$ by $t=0$. Then

$$
2=\operatorname{lct}_{2}(X, G) \geqslant \operatorname{lct}(X, G)=\min \left(2, \operatorname{lct}_{3}(X, G)\right) \in\{2,15 / 8\}
$$

by Theorem 4.5 and Corollary 4.13, Note that $\operatorname{Aut}(X) \cong \mathbb{Z}_{2} \times \mathbb{P S L}\left(2, \mathbb{F}_{7}\right)$.
Put $P_{1}=[1: 0: 0: 0], P_{2}=[0: 1: 0: 0], P_{3}=[0: 0: 1: 0]$. Then

- the points $P_{1}, P_{2}, P_{3}$ are contained in the unique $\operatorname{Aut}(X)$-orbit consisting of 24 points,
- the stabilizer subgroup of the subset $\left\{P_{1}, P_{2}, P_{3}\right\}$ is isomorphic to $\mathbb{Z}_{2} \times\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right)$.

Without loss of generality, we may assume that $\left\{P_{1}, P_{2}, P_{3}\right\}$ is $G$-invariant.
The linear system $\left|-K_{X}\right|$ contains curves $C_{1}, C_{2}$ and $C_{3}$ such that

$$
\operatorname{mult}_{P_{1}}\left(C_{1}\right)=\operatorname{mult}_{P_{2}}\left(C_{2}\right)=\operatorname{mult}_{P_{3}}\left(C_{3}\right)=2,
$$

and the curves $C_{1}, C_{2}$ and $C_{3}$ have cusps at the points $P_{1}, P_{2}$ and $P_{3}$, respectively. Then

$$
\left(X, \frac{5}{8}\left(C_{1}+C_{2}+C_{3}\right)\right)
$$

is strictly $\log$ canonical, which implies that $\operatorname{lct}_{3}(X, G) \leqslant 15 / 8$.
Lemma 4.18. Suppose that

$$
f_{4}(x, y, z)=t^{2}+z^{4}+y^{4}+x^{4}+a x^{2} y^{2}+b x^{2} z^{2}+c y^{2} z^{2}
$$

where $a, b$ and $c$ are general complex numbers. Then $\operatorname{lct}(X, \operatorname{Aut}(X))=1$.
Proof. It follows from [5] that

$$
\operatorname{Aut}(X) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

which implies that every $\operatorname{Aut}(X)$-invariant curve in $\left|-K_{X}\right|$ is cut out on $X$ by one of the following equations: $x=0, y=0, z=0$. Then $\operatorname{lct}(X, \operatorname{Aut}(X))=1$ by Theorem 4.4.

## 5. Cubic surfaces

Let $X$ be a smooth cubic surface in $\mathbb{P}^{3}$. Then $\operatorname{Aut}(X)$ is finite. It follows from [5] that

- if $\operatorname{Aut}(X) \cong \mathbb{S}_{5}$, then $X$ is the Clebsch cubic surface,
- if $\operatorname{Aut}(X) \cong \mathbb{Z}_{3}^{2} \rtimes \mathbb{S}_{4}$, then $X$ is the Fermat cubic surface.

Lemma 5.1 ([1, Example 1.11]). If $\operatorname{Aut}(X) \cong \mathbb{S}_{5}$, then $\operatorname{lct}(X, \operatorname{Aut}(X))=2$.
Lemma 5.2 ([1] Lemma 5.6]). If $\operatorname{Aut}(X) \cong \mathbb{Z}_{3}^{2} \rtimes \mathbb{S}_{4}$, then $\operatorname{lct}(X, \operatorname{Aut}(X))=4$.
By [5], there is a $\operatorname{Aut}(X)$-invariant curve in $\left|-K_{X}\right|$ if $\operatorname{Aut}(X) \not \not \mathbb{S}_{5}$ and $\operatorname{Aut}(X) \not \approx \mathbb{Z}_{3}^{2} \rtimes \mathbb{S}_{4}$.
Corollary 5.3. If $\operatorname{Aut}(X) \not \not \mathbb{S}_{5}$ and $\operatorname{Aut}(X) \not \not \mathbb{Z}_{3}^{2} \rtimes \mathbb{S}_{4}$, then $\operatorname{lct}(X, \operatorname{Aut}(X)) \leqslant 1$.
The main purpose of this section is to prove the following result.
Theorem 5.4. Let $G$ be a subgroup of the group $\operatorname{Aut}(X)$. Then

$$
\operatorname{lct}(X, G)=\operatorname{lct}_{1}(X, G) \in\{2 / 3,5 / 6,1\}
$$

if the following two conditions are satisfied:

- the linear system $\left|-K_{X}\right|$ contains a $G$-invariant curve,
- a $G$-invariant subgroup in $\operatorname{Pic}(X)$ is generated by $-K_{X}$.

Proof. Suppose $\left|-K_{X}\right|$ contain a $G$-invariant curve. Then

$$
\operatorname{lct}_{1}(X, G) \in\{2 / 3,3 / 4,5 / 6,1\}
$$

and it follows from Example 1.1 that $\operatorname{lct}(X, G)=\operatorname{lct}_{1}(X, G)=2 / 3$ if $\operatorname{lct}_{1}(X, G)=2 / 3$.
Suppose that a $G$-invariant subgroup in $\operatorname{Pic}(X)$ is $\mathbb{Z}\left[-K_{X}\right]$. Then $\operatorname{lct}_{1}(X, G) \neq 4 / 3$.
Suppose that $\operatorname{lct}(X, G)<\operatorname{lct}_{1}(X, G) \neq 2 / 3$. Let us derive a contradiction.
There exists a $G$-invariant effective $\mathbb{Q}$-divisor $D$ on the surface $X$ such that

$$
D \sim_{\mathbb{Q}}-K_{X}
$$

and the log pair $(X, \lambda D)$ is strictly log canonical for some rational number $\lambda<\operatorname{lct}_{1}(X, G)$.
By Theorem 2.6 and Lemma 2.12, the locus $\operatorname{LCS}(X, \lambda D)$ consists of a single point $P \in X$.
Let $T$ be the curve in $\left|-K_{X}\right|$ such that $\operatorname{mult}_{P}(T) \geqslant 2$. We may assume that $\operatorname{Supp}(D)$ does not contain any component of the curve $T$ by Remark 2.3. Then

$$
3=T \cdot D \geqslant \operatorname{mult}_{P}(T) \cdot \operatorname{mult}_{P}(D) \geqslant 2 \operatorname{mult}_{P}(D) \geqslant \frac{2}{\lambda}>1
$$

which implies $\operatorname{mult}_{P}(T)=2$ and $\operatorname{mult}_{P}(D) \leqslant 3 / 2$.
Note that the curve $T$ is irreducible, which implies that $P=\operatorname{Sing}(T)$.

Let $\sigma: \bar{X} \rightarrow X$ be a blow up of the point $P$ and let $E$ be the $\sigma$-exceptional curve. Then

$$
K_{\bar{X}}+\lambda \bar{D}+\left(\lambda \operatorname{mult}_{P}(D)-1\right) E \sim_{\mathbb{Q}} \sigma^{*}\left(K_{X}+\lambda D\right)
$$

where $\bar{D}$ is the proper transform of the divisor $D$ on the surface $\bar{X}$.
It follows from Remark 2.11 that there exists a point $Q \in E$ such that

$$
\operatorname{LCS}\left(\bar{X}, \lambda \bar{D}+\left(\lambda \operatorname{mult}_{P}(D)-1\right) E\right)=Q
$$

and $\operatorname{mult}_{Q}(\bar{D})+\operatorname{mult}_{P}(D) \geqslant 2 / \lambda$.
Let $\bar{T}$ be the proper transform of the curve $T$ on the surface $\bar{X}$. If $Q \in \bar{T}$, then
$3-2 \operatorname{mult}_{P}(D)=\bar{T} \cdot \bar{D} \geqslant \operatorname{mult}_{Q}(\bar{T}) \operatorname{mult}_{Q}(\bar{D})>\operatorname{mult}_{Q}(\bar{T})\left(2-\operatorname{mult}_{P}(D)\right) \geqslant 2-\operatorname{mult}_{P}(D)$,
which implies that $\operatorname{mult}_{P}(D) \leqslant 1$. But $\operatorname{mult}_{P}(D) \geqslant 1 / \lambda>1$. Thus, we see that $Q \notin \bar{T}$.
As $T$ is irreducible, the surface $\bar{X}$ is a smooth quartic hypersurface in $\mathbb{P}(1,1,1,2)$.
Let $\bar{M}$ be a general curve in $\left|-K_{\bar{X}}\right|$ such that $Q \in \bar{M}$. Then

$$
3-\operatorname{mult}_{P}(D)=\bar{M} \cdot \bar{D} \geqslant \operatorname{mult}_{Q}(\bar{M}) \operatorname{mult}_{Q}(\bar{D}) \geqslant \operatorname{mult}_{Q}(\bar{D}),
$$

as $\bar{M} \not \subset \operatorname{Supp}(D)$.
Let $\rho: \tilde{X} \rightarrow \bar{X}$ be a blow up of the point $Q$ and let $F$ be the $\rho$-exceptional curve. Then
$K_{\tilde{X}}+\lambda \tilde{D}+\left(\lambda \operatorname{mult}_{P}(D)-1\right) \tilde{E}+\left(\lambda \operatorname{mult}_{Q}(\bar{D})+\lambda \operatorname{mult}_{P}(D)-2\right) F \sim_{\mathbb{Q}}(\sigma \circ \rho)^{*}\left(K_{X}+\lambda D\right)$,
where $\tilde{D}$ and $\tilde{E}_{i}$ are proper transforms of the divisors $D$ and $E$ on the surface $\tilde{X}$, respectively.
It follows from Remark 2.11 that there is a point $O \in F$ such that

$$
\operatorname{LCS}\left(\tilde{X}, \lambda \tilde{D}+\left(\lambda \operatorname{mult}_{P}(D)-1\right) \tilde{E}+\left(\lambda \operatorname{mult}_{Q}(\bar{D})+\lambda \operatorname{mult}_{P}(D)-2\right) F\right)=O
$$

since $\lambda \operatorname{mult}_{Q}(\bar{D})+\lambda \operatorname{mult}_{P}(D)-2 \leqslant 3 \lambda-2<1$. By Remark 2.11, we have

$$
\begin{equation*}
\operatorname{mult}_{O}(\tilde{D})+\operatorname{mult}_{Q}(\bar{D})+\operatorname{mult}_{P}(D) \geqslant \frac{3}{\lambda}>3 . \tag{5.5}
\end{equation*}
$$

If $O=\tilde{E} \cap F$, then it follows from Lemma 2.8 that

$$
2 \lambda \operatorname{mult}_{P}(D)-2=\left(\lambda \tilde{D}+\left(\lambda \operatorname{mult}_{Q}(\bar{D})+\lambda \operatorname{mult}_{P}(D)-2\right) F\right) \cdot \tilde{E}>1
$$

which implies that $\operatorname{mult}_{P}(D)>3 / 2$. However $\operatorname{mult}_{P}(D) \leqslant 3 / 2$. Thus, we see that $O \notin \tilde{E}$.
There exists a unique curve $\tilde{B}$ in the pencil $\left|-K_{\tilde{X}}\right|$ such that $O \in \tilde{B}$. Then

$$
\tilde{E} \not \subset \operatorname{Supp}(\tilde{B}) \not \supset F,
$$

since both $O \notin \tilde{E}$ and $Q \notin \bar{T}$. Put $B=\sigma \circ \rho(\tilde{B})$. Then $B \in\left|-K_{X}\right|$ and $B \neq T$.
The curve $B$ is $G$-invariant, which implies that $B$ is irreducible since $P \in B$.
By Remark [2.3, we may assume that $B \not \subset \operatorname{Supp}(D)$. Then

$$
3-\operatorname{mult}_{P}(D)-\operatorname{mult}_{Q}(\bar{D})=\tilde{B} \cdot \tilde{D} \geqslant \operatorname{mult}_{O}(\tilde{B}) \operatorname{mult}_{O}(\tilde{D}) \geqslant \operatorname{mult}_{O}(\tilde{D})
$$

which is impossible by (5.5).
Let us show how to compute let $(X, G)$ in one case.

Lemma 5.6. Suppose that the surface $X$ is given by the equation

$$
x^{3}+x\left(y^{2}+z^{2}+t^{2}\right)+a y z t=0 \subset \mathbb{P}^{3} \cong \operatorname{Proj}(\mathbb{C}[x, y, z, t])
$$

where $a$ is a general complex number. Then $\operatorname{lct}(X, \operatorname{Aut}(X))=1$.
Proof. It follows from [5] that

$$
\operatorname{Aut}(X) \cong \mathbb{S}_{4}
$$

which implies that the only $\operatorname{Aut}(X)$-invariant curve in $\left|-K_{X}\right|$ is cut out on $X$ by $x=0$.
The only $\operatorname{Aut}(X)$-invariant curve in $\left|-K_{X}\right|$ has ordinary double points, and $\operatorname{Aut}(X)$-invariant $\operatorname{subgroup} \operatorname{in} \operatorname{Pic}(X)$ is generated by $-K_{X}$. Then $\operatorname{lct}(X, \operatorname{Aut}(X))=1$ by Theorem 5.4.

## 6. Intersection of two quadrics

Let $X$ be a smooth complete intersection of two quadrics in $\mathbb{P}^{4}$. Then $X$ can be given by

$$
\sum_{i=0}^{4} \alpha_{i} x_{i}^{2}=\sum_{i=0}^{4} \beta_{i} x_{i}^{2}=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}\left(\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]\right)
$$

for some $\left[\alpha_{0}: \alpha_{1}: \alpha_{2}: \alpha_{3}: \alpha_{4}\right] \neq\left[\beta_{0}: \beta_{1}: \beta_{2}: \beta_{3}: \beta_{4}\right]$ in $\mathbb{P}^{4}$ (see [5, Lemma 6.5]).
The group $\operatorname{Aut}(X)$ is finite. Let $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$ be involutions in $\operatorname{Aut}(X)$ such that

$$
\left\{\begin{array}{l}
\tau_{1}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}\right]\right)=\left[x_{0}:-x_{1}: x_{2}: x_{3}: x_{4}\right], \\
\tau_{2}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}\right]\right)=\left[x_{0}: x_{1}:-x_{2}: x_{3}: x_{4}\right], \\
\tau_{3}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}\right]\right)=\left[x_{0}: x_{1}: x_{2}:-x_{3}: x_{4}\right], \\
\tau_{4}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}\right]\right)=\left[x_{0}: x_{1}: x_{2}: x_{3}:-x_{4}\right],
\end{array}\right.
$$

and let $\Gamma$ be a subgroup in $\operatorname{Aut}(X)$ that is generated by $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}$. Then $\Gamma \cong \mathbb{Z}_{2}^{4}$.
Lemma 6.1 (5, Theorem 6.9]). A $\Gamma$-invariant $\operatorname{subgroup}$ in $\operatorname{Pic}(X)$ is generated by $-K_{X}$.
The surface $X$ contains no $\Gamma$-fixed points, which implies the following result by Corollary 2.16.
Corollary 6.2 ([1, Example 1.10]). The equality $\operatorname{lct}(X, \Gamma)=1$ holds.
It easily follows from [5] that the following two conditions are equivalent:

- the linear system $\left|-K_{X}\right|$ does not contain $\operatorname{Aut}(X)$-invariant curves,
- either $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{S}_{3}$ or $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{D}_{5}$.

Corollary 6.3. If $\operatorname{Aut}(X) \not \not \mathbb{Z}_{2}^{4} \rtimes \mathbb{S}_{3}$ and $\operatorname{Aut}(X) \not \not \mathbb{Z}_{2}^{4} \rtimes \mathbb{D}_{5}$, then $\operatorname{lct}(X, \operatorname{Aut}(X))=1$.
The main purpose of this section is to prove the following result.
Theorem 6.4. If $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{S}_{3}$ or $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{D}_{5}$, then $\operatorname{lct}(X, \operatorname{Aut}(X))=2$.
Proof. Suppose that either $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{S}_{3}$ or $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{D}_{5}$. Then

$$
\operatorname{lct}(X, G) \leqslant \operatorname{lct}_{2}(X, G) \leqslant 2,
$$

since the linear system $\left|-2 K_{X}\right|$ contains a $\operatorname{Aut}(X)$-invariant curve (see [5]).
Suppose that $\operatorname{lct}(X, G)<2$. Let us derive a contradiction.
There exists a $G$-invariant effective $\mathbb{Q}$-divisor $D$ on the surface $X$ such that

$$
D \sim_{\mathbb{Q}}-K_{X}
$$

and $(X, \lambda D)$ is strictly $\log$ canonical for some $\lambda \in \mathbb{Q}$ such that $\lambda<2$.
It follows from Lemmata 2.14 and 2.12 that $|\operatorname{LCS}(X, \lambda D)| \in\{2,3,5\}$ and $\operatorname{LCS}(X, \lambda D)$ imposes independent linear conditions on hyperplanes in $\mathbb{P}^{4}$, since $\left|-K_{X}\right|$ contains no $G$-invariant curves.

Suppose that $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{S}_{3}$. Then $|\operatorname{LCS}(X, \lambda D)| \neq 5$, and $X$ can be given by

$$
x_{0}^{2}+\epsilon_{3} x_{1}^{2}+\epsilon_{3}^{2} x_{2}^{2}+x_{3}^{2}=x_{0}^{2}+\epsilon_{3}^{2} x_{1}^{2}+\epsilon_{3} x_{2}^{2}+x_{4}^{2}=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}\left(\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]\right),
$$

where $\epsilon_{3}$ is a primitive cube root of unity. Let $\iota_{1}$ and $\iota_{2}$ be elements in $\operatorname{Aut}(X)$ such that

$$
\left\{\begin{array}{l}
\iota_{1}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right]\right)=\left[x_{0}: x_{2}: x_{1}: x_{4}: x_{3}\right], \\
\iota_{2}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right]\right)=\left[x_{1}: x_{2}: x_{0}: \epsilon_{3} x_{3}: \epsilon_{3}^{2} x_{4}\right],
\end{array}\right.
$$

and let $\Pi$ be a linear subspace in $\mathbb{P}^{4}$ spanned by $\operatorname{LCS}(X, \lambda D)$. Then

$$
\operatorname{Aut}(X)=\left\langle\Gamma, \iota_{1}, \iota_{2}\right\rangle
$$

furthermore, either we have $|\operatorname{LCS}(X, \lambda D)|=2$ and $\Pi$ is given by the equations $x_{0}=x_{1}=x_{2}=0$, or we have $|\operatorname{LCS}(X, \lambda D)|=3$ and $\Pi$ is given by $x_{3}=x_{4}=0$. Since the subset

$$
x_{0}^{2}+\epsilon_{3} x_{1}^{2}+\epsilon_{3}^{2} x_{2}^{2}+x_{3}^{2}=x_{0}^{2}+\epsilon_{3}^{2} x_{1}^{2}+\epsilon_{3} x_{2}^{2}+x_{4}^{2}=x_{0}=x_{1}=x_{2}=0
$$

is empty, we have $|\operatorname{LCS}(X, \lambda D)|=3$ and $\Pi$ is given by $x_{3}=x_{4}=0$. However the subset

$$
x_{0}^{2}+\epsilon_{3} x_{1}^{2}+\epsilon_{3}^{2} x_{2}^{2}+x_{3}^{2}=x_{0}^{2}+\epsilon_{3}^{2} x_{1}^{2}+\epsilon_{3} x_{2}^{2}+x_{4}^{2}=x_{3}=x_{4}=0
$$

consists of four points, which implies that $|\operatorname{LCS}(X, \lambda D)| \neq 3$. Thus, we have $\operatorname{Aut}(X) \not \not \neq \mathbb{Z}_{2}^{4} \rtimes \mathbb{S}_{3}$.
We see that $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{D}_{5}$. Then $|\operatorname{LCS}(X, \lambda D)| \neq 3$, and $X$ can be given by

$$
\sum_{i=0}^{4} \epsilon_{5}^{i} x_{i}^{2}=\sum_{i=0}^{4} \epsilon_{5}^{4-i} x_{i}^{2}=0 \subset \mathbb{P}^{4} \cong \operatorname{Proj}\left(\mathbb{C}\left[x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right]\right)
$$

where $\epsilon_{5}$ is a primitive fifth root of unity. Let $\chi_{1}$ and $\chi_{2}$ be elements in $\operatorname{Aut}(X)$ such that

$$
\left\{\begin{array}{l}
\chi_{1}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right]\right)=\left[x_{1}: x_{2}: x_{3}: x_{4}: x_{0}\right], \\
\chi_{2}\left(\left[x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right]\right)=\left[x_{4}: x_{3}: x_{2}: x_{1}: x_{0}\right],
\end{array}\right.
$$

and let $\Pi$ be a linear subspace in $\mathbb{P}^{4}$ spanned by $\operatorname{LCS}(X, \lambda D)$. Then

$$
\operatorname{Aut}(X)=\left\langle\Gamma, \chi_{1}, \chi_{2}\right\rangle
$$

and $\Pi \not \approx \mathbb{P}^{1}$. Since $|\operatorname{LCS}(X, \lambda D)| \in\{2,5\}$, we have $|\operatorname{LCS}(X, \lambda D)|=5$, which is impossible because the surface $X$ does not have $\operatorname{Aut}(X)$-orbits of length 5 .

Corollary 6.5. The following four conditions are equivalent:

- the linear system $\left|-K_{X}\right|$ does not contain $\operatorname{Aut}(X)$-invariant curves,
- either $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{S}_{3}$ or $\operatorname{Aut}(X) \cong \mathbb{Z}_{2}^{4} \rtimes \mathbb{D}_{5}$,
- the inequality $\operatorname{lct}(X, \operatorname{Aut}(X))>1$ holds,
- the equality $\operatorname{lct}(X, \operatorname{Aut}(X))=2$ holds.


## 7. Surfaces of big degree

Let $X$ be a smooth del Pezzo surface and let $G$ be a finite subgroup in $\operatorname{Aut}(X)$.
Lemma 7.1. Suppose that $K_{X}^{2}=6$. Then $\operatorname{lct}(X, G) \leqslant 1$.
Proof. Let $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}$ and $L_{6}$ be smooth rational curves on the surface $X$ such that

$$
L_{1} \cdot L_{1}=L_{2} \cdot L_{2}=L_{3} \cdot L_{3}=L_{4} \cdot L_{4}=L_{5} \cdot L_{5}=L_{6} \cdot L_{6}=-1
$$

and $L_{i} \neq L_{j} \Longleftrightarrow i \neq j$. Then $\sum_{i=1}^{6} L_{i}$ is a $G$-invariant curve in $\left|-K_{X}\right|$.
Lemma 7.2. Suppose that $K_{X}^{2}=7$. Then $\operatorname{lct}(X, G)=1 / 3$.

Proof. Let $L_{1}, L_{2}$ and $L_{3}$ be smooth rational curves on the surface $X$ such that

$$
L_{1} \cdot L_{1}=L_{2} \cdot L_{2}=L_{3} \cdot L_{3}=-L_{1} \cdot L_{2}=-L_{3} \cdot L_{2}=-1
$$

and $L_{1} \cdot L_{2}=0$. Then $2 L_{1}+3 L_{2}+L_{1} \in\left|-K_{X}\right|$ and the curve $2 L_{1}+3 L_{2}+L_{1}$ is $G$-invariant, which immediately implies that $\operatorname{lct}(X, G)=1 / 3$ by Example 1.1.
Lemma 7.3. Suppose that $K_{X}^{2}=8$ and $X \not \approx \mathbb{P}^{1} \times \mathbb{P}^{1}$. Then $\operatorname{lct}(X, G) \leqslant 1 / 2$.
Proof. Let $L$ and $E$ be smooth rational curves on the surface $X$ such that $L \cdot L=0$ and $E \cdot E=-1$, and let $C$ be a $G$-invariant curve in the linear system $|n L|$ for some $n \gg 0$. Then

$$
2 E+\frac{3}{n} C \sim_{\mathbb{Q}}-K_{X},
$$

which implies that $\operatorname{lct}(X, G) \leqslant 1 / 2$, since $E$ is $G$-invariant.
Corollary 7.4. If $\operatorname{lct}(X, G)>1$ and $K_{X}^{2} \geqslant 6$, then either $X \cong \mathbb{P}^{2}$ or $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$.
Let us conclude this section by proving the following criterion (cf. Example 1.12).
Theorem 7.5. Suppose that $X \cong \mathbb{P}^{1} \times \mathbb{P}^{1}$. Then the following are equivalent:

- the inequality $\operatorname{lct}(X, G)>1$ holds,
- the inequality $\operatorname{lct}(X, G) \geqslant 5 / 4$ holds,
- there are no $G$-invariant curves in the linear systems

$$
\left|L_{1}\right|,\left|L_{2}\right|,\left|2 L_{1}\right|,\left|2 L_{2}\right|,\left|L_{1}+L_{2}\right|,\left|L_{1}+2 L_{2}\right|,\left|2 L_{1}+L_{2}\right|,\left|2 L_{1}+2 L_{2}\right|,
$$

where $L_{1}$ and $L_{2}$ are fibers of two distinct natural projections of the surface $X$ to $\mathbb{P}^{1}$.
Proof. Let $L_{1}$ and $L_{2}$ be fibers of two distinct natural projections of the surface $X$ to $\mathbb{P}^{1}$. Then

$$
\left|a L_{1}+b L_{2}\right|
$$

contains no $G$-invariant curves for every $a$ and $b$ in $\{0,1,2\}$ whenever $\operatorname{lct}(X, G)>1$.
Suppose that $\left|L_{1}\right|,\left|L_{2}\right|,\left|2 L_{1}\right|,\left|2 L_{2}\right|,\left|L_{1}+L_{2}\right|,\left|L_{1}+2 L_{2}\right|,\left|2 L_{1}+L_{2}\right|,\left|2 L_{1}+2 L_{2}\right|$ do not contain $G$-invariant curves and $\operatorname{lct}(X, G)<4 / 3$. Let us derive a contradiction.

There exists a $G$-invariant effective $\mathbb{Q}$-divisor $D$ on the surface $X$ such that

$$
D \sim_{\mathbb{Q}} 2\left(L_{1}+L_{2}\right) \sim-K_{X}
$$

and $(X, \lambda D)$ is strictly $\log$ canonical for some $\lambda \in \mathbb{Q}$ such that $\lambda<5 / 4$. By Theorem 2.5, we have

$$
H^{1}\left(X, \mathcal{I}(X, \lambda D) \otimes \mathcal{O}_{X}\left(L_{1}+L_{2}\right)\right)=0
$$

where $\mathcal{I}(X, \lambda D)$ is the multiplier ideal sheaf of the $\log$ pair $(X, \lambda D)$ (see Section [2).
The ideal sheaf $\mathcal{I}(X, \lambda D)$ defines a zero-dimensional subscheme $\mathcal{L}$ of the surface $X$, since the linear system $\left|a L_{1}+b L_{2}\right|$ has no $G$-invariant curves for every $a$ and $b$ in $\{0,1,2\}$.

Since the subscheme $\mathcal{L}$ is zero-dimensional, we have the short exact sequence

$$
0 \longrightarrow H^{0}\left(X, \mathcal{I}(X, \lambda D) \otimes \mathcal{O}_{X}\left(L_{1}+L_{2}\right)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}\left(L_{1}+L_{2}\right)\right) \longrightarrow H^{0}\left(\mathcal{O}_{\mathcal{L}}\right) \longrightarrow 0
$$

which implies that $\operatorname{Supp}(\mathcal{L})$ consists of four points that are not contained in one curve in $\left|L_{1}+L_{2}\right|$.
Let $P_{1}, P_{2}, P_{3}$ and $P_{4}$ be four points in $\operatorname{Supp}(\mathcal{L})$. Then $P_{1}, P_{2}, P_{3}$ and $P_{4}$ form a $G$-orbit.
Write $L_{11}, L_{12}, L_{13}, L_{14}$ for the curves in $\left|L_{1}\right|$ that pass through $P_{1}, P_{2}, P_{3}, P_{4}$, respectively, write $L_{21}, L_{22}, L_{23}, L_{24}$ for the curves in $\left|L_{2}\right|$ that pass through $P_{1}, P_{2}, P_{3}, P_{4}$, respectively. Then

$$
L_{1 i}=L_{1 j} \Longleftrightarrow i=j \Longleftrightarrow L_{2 i}=L_{2 j}
$$

as $\left|L_{1}\right|,\left|L_{2}\right|$ and $\left|L_{1}+L_{2}\right|$ do not contain $G$-invariant curves.

Let $C_{1}, C_{2}, C_{3}, C_{4}$ be the curves in the linear system $\left|L_{1}+L_{2}\right|$ such that each contains exactly three points in $\operatorname{Supp}(\mathcal{L})$ and $P_{1} \notin C_{1}, P_{2} \notin C_{2}, P_{3} \notin C_{3}, P_{4} \notin C_{4}$. Then

$$
\left(X, \frac{2}{3}\left(C_{1}+C_{2}+C_{3}+C_{4}\right)\right)
$$

is strictly $\log$ canonical, since the curves $C_{1}, C_{2}, C_{3}, C_{4}$ are smooth and irreducible.
By Remark 2.3, we may assume that $\operatorname{Supp}(D)$ does not contain $C_{1}, C_{2}, C_{3}$ and $C_{4}$. Then

$$
16=D \cdot\left(C_{1}+C_{2}+C_{3}+C_{4}\right)=3 \sum_{i=1}^{4} \operatorname{mult}_{P_{i}}(D)=12 \operatorname{mult}_{P_{1}}(D)=\cdots=12 \operatorname{mult}_{P_{4}}(D),
$$

which implies that $\operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D)=\operatorname{mult}_{P_{4}}(D) \leqslant 4 / 3$.
Let $\sigma: \bar{X} \rightarrow X$ be the blow-up of the points $P_{1}, P_{2}, P_{3}$ and $P_{4}$, let $E_{1}, E_{2}, E_{3}$ and $E_{4}$ be the $\sigma$-exceptional curves such that $\sigma\left(E_{1}\right)=P_{1}, \sigma\left(E_{2}\right)=P_{2}, \sigma\left(E_{3}\right)=P_{3}$ and $\sigma\left(E_{4}\right)=P_{4}$. Then

$$
K_{\bar{X}}+\lambda \bar{D}+\sum_{i=1}^{4}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) E_{i} \sim_{\mathbb{Q}} \sigma^{*}\left(K_{X}+\lambda D\right)
$$

where $\bar{D}$ is the proper transform of the divisor $D$ on the surface $\bar{X}$.
By Remark [2.11, there are points $Q_{1} \in E_{1}, Q_{2} \in E_{2}, Q_{3} \in E_{3}$ and $Q_{4} \in E_{4}$ such that

$$
\operatorname{LCS}\left(\bar{X}, \lambda \bar{D}+\sum_{i=1}^{4}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) E_{i}\right)=\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}
$$

since $\lambda \operatorname{mult}_{P_{1}}(D)=\operatorname{mult}_{P_{2}}(D)=\operatorname{mult}_{P_{3}}(D)=\operatorname{mult}_{P_{4}}(D) \leqslant 5 / 3<2$.
Since $\bar{D}$ is $G$-invariant, it follows that the action of the group $G$ on the surface $X$ naturally lifts to an action on $\bar{X}$ where the points $Q_{1}, Q_{2}, Q_{3}$ and $Q_{4}$ form a $G$-orbit.

Put $\bar{R}=3 \sigma^{*}\left(L_{1}+L_{2}\right)-2 \sum_{i=1}^{4} E_{i}$. Then $\bar{R} \cdot \bar{R}=4$, which implies that $\bar{R}$ is nef and big, since

$$
\bar{L}_{11}+\bar{L}_{21}+2 \bar{C}_{1} \sim 3 \sigma^{*}\left(L_{1}+L_{2}\right)-2 \sum_{i=1}^{4} E_{i}
$$

and $\bar{L}_{11} \cdot \bar{R}=\bar{L}_{21} \cdot \bar{R}=1$ and $\bar{C}_{1} \cdot \bar{R}=0$, where we denote by symbols $\bar{L}_{11}, \bar{L}_{21}$ and $\bar{C}_{1}$ the proper transforms of the curves $L_{11}, L_{21}$ and $C_{1}$ on the surface $\bar{X}$, respectively. Then
$K_{\bar{X}}+\lambda \bar{D}+\sum_{i=1}^{4}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) E_{i}+\frac{1}{2}\left(\bar{R}+(5-4 \lambda) \sigma^{*}\left(L_{1}+L_{2}\right)\right) \sim_{\mathbb{Q}} 2 \sigma^{*}\left(L_{1}+L_{2}\right)-\sum_{i=1}^{4} E_{i} \sim-K_{\bar{X}}$,
where $\bar{R}+(5-4 \lambda) \sigma^{*}\left(L_{1}+L_{2}\right)$ is nef and big since $\lambda<5 / 4$. By Theorem [2.5, we have

$$
H^{1}\left(X, \mathcal{I}\left(\bar{X}, \lambda \bar{D}+\sum_{i=1}^{4}\left(\lambda \operatorname{mult}_{P_{i}}(D)-1\right) E_{i}\right) \otimes \mathcal{O}_{\bar{X}}\left(-K_{\bar{X}}\right)\right)=0
$$

from which it follows that there is a unique curve $\bar{C} \in\left|-K_{\bar{X}}\right|$ containing $Q_{1}, Q_{2}, Q_{3}$ and $Q_{4}$.
The curve $\bar{C}$ must be $G$-invariant, however then $\sigma(\bar{C})$ is also $G$-invariant, which is impossible, since $\sigma(\bar{C}) \in\left|2 L_{1}+2 L_{2}\right|$ and $\left|2 L_{1}+2 L_{2}\right|$ contains no $G$-invariant curves.

## References

[1] I. Cheltsov, Log canonical thresholds of del Pezzo surfaces
Geometric and Functional Analysis, 18 (2008), 1118-1144
[2] I. Cheltsov, D. Kosta, Computing $\alpha$-invariants of singular del Pezzo surfaces arXiv:math/1010.0043 (2010)
[3] I. Cheltsov, C. Shramov, Log canonical thresholds of smooth Fano threefolds Russian Mathematical Surveys 63 (2008), 859-958
[4] I. Cheltsov, C. Shramov, On exceptional quotient singularities arXiv:math/0909.0918 (2009)
[5] I. Dolgachev, V. Iskovskikh, Finite subgroups of the plane Cremona group arXiv:math.AG/0610595 (2006)
[6] J. Kollár, Singularities of pairs Proceedings of Symposia in Pure Mathematics 62 (1997), 221-287
[7] R. Lazarsfeld, Positivity in algebraic geometry II Springer-Verlag, Berlin, 2004
[8] D. Markushevich, Yu. Prokhorov, Exceptional quotient singularities American Journal of Mathematics 121 (1999), 1179-1189
[9] Y. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics Advances in Mathematics 218 (2008), 1526-1565
[10] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$ Inventiones Mathematicae 89 (1987), 225-246
[11] G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class Inventiones Mathematicae, 101 (1990), 101-172
[12] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I Communications on Pure and Applied Mathematics 31 (1978), 339-411
[13] S. Yau, Y. Yu, Gorenstein quotient singularities in dimension three Memoirs of the American Mathematical Society 505 (1993), Providence

School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, UK


[^0]:    The first author would like to thank Institut des Hautes Etudes Scientifiques for hospitality.

