65 research outputs found

    Coarsening of Disordered Quantum Rotors under a Bias Voltage

    Full text link
    We solve the dynamics of an ensemble of interacting rotors coupled to two leads at different chemical potential letting a current flow through the system and driving it out of equilibrium. We show that at low temperature the coarsening phase persists under the voltage drop up to a critical value of the applied potential that depends on the characteristics of the electron reservoirs. We discuss the properties of the critical surface in the temperature, voltage, strength of quantum fluctuations and coupling to the bath phase diagram. We analyze the coarsening regime finding, in particular, which features are essentially quantum mechanical and which are basically classical in nature. We demonstrate that the system evolves via the growth of a coherence length with the same time-dependence as in the classical limit, R(t)t1/2R(t) \simeq t^{1/2} -- the scalar curvature driven universality class. We obtain the scaling function of the correlation function at late epochs in the coarsening regime and we prove that it coincides with the classical one once a prefactor that encodes the dependence on all the parameters is factorized. We derive a generic formula for the current flowing through the system and we show that, for this model, it rapidly approaches a constant that we compute.Comment: 53 pages, 12 figure

    New features of the phase transition to superconducting state in thin films

    Full text link
    The Halperin-Lubensky-Ma (HLM) effect of a fluctuation-induced change of the order of phase transition in thin films of type I superconductors with relatively small Ginzburg-Landau number κ\kappa is considered. Numerical data for the free energy, the order parameter jump, the latent heat, and the specific heat of W, Al and In are presented to reveal the influence of film thickness and material parameters on the properties of the phase transition. We demonstrate for the first time that in contrast to the usual notion the HLM effect occurs in the most distinct way in superconducting films with high critical magnetic field Hc0H_{c0} rather than in materials with small κ\kappa. The possibility for an experimental observation of the fluctuation change of the order of superconducting phase transition in superconducting films is discussed.Comment: 11 pages, MikTexTeX, 3 fig, 2 Tables, corrected some typos, Submitted J.Phys:Cond Ma

    Neisseria gonorrhoeae Infection Induces Altered Amphiregulin Processing and Release

    Get PDF
    Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections

    Intracellular expression of Tat alters mitochondrial functions in T cells: a potential mechanism to understand mitochondrial damage during HIV-1 replication

    Get PDF
    HIV-1 replication results in mitochondrial damage that is enhanced during antiretroviral therapy (ART). The onset of HIV-1 replication is regulated by viral protein Tat, a 101-residue protein codified by two exons that elongates viral transcripts. Although the first exon of Tat (aa 1–72) forms itself an active protein, the presence of the second exon (aa 73–101) results in a more competent transcriptional protein with additional functions. Results: Mitochondrial overall functions were analyzed in Jurkat cells stably expressing full-length Tat (Tat101) or one-exon Tat (Tat72). Representative results were confirmed in PBLs transiently expressing Tat101 and in HIV-infected Jurkat cells. The intracellular expression of Tat101 induced the deregulation of metabolism and cytoskeletal proteins which remodeled the function and distribution of mitochondria. Tat101 reduced the transcription of the mtDNA, resulting in low ATP production. The total amount of mitochondria increased likely to counteract their functional impairment. These effects were enhanced when Tat second exon was expressed. Conclusions: Intracellular Tat altered mtDNA transcription, mitochondrial content and distribution in CD4+ T cells. The importance of Tat second exon in non-transcriptional functions was confirmed. Tat101 may be responsible for mitochondrial dysfunctions found in HIV-1 infected patients.We greatly appreciate the secretarial assistance of Mrs Olga Palao. This work was supported by FIPSE (360924/10), Spanish Ministry of Economy and Competitiveness (SAF2010-18388), Spanish Ministry of Health (EC11- 285), AIDS Network ISCIII-RETIC (RD12/0017/0015), Instituto de Salud Carlos III, Spanish Ministry of Economy and Competitiveness (FIS PI12/00506). The work of Sara Rodríguez-Mora is supported by a fellowship of Sara Borrell from Spanish Ministry of Economy and Competitiveness (2013). The work of María Rosa López-Huertas is supported by a fellowship of the European Union Programme Health 2009 (CHAARM).S

    Unraveling active baths through their hidden degrees of freedom

    No full text
    The dynamics of a probe particle is highly influenced by the nature of the bath in which it is immersed. In particular, baths composed by active (e.g., self-propelled) particles induce intriguing out-of-equilibrium effects on tracer's motion that are customarily described by integrating out the dynamics of the bath's degrees of freedom (DOFs). However, thermodynamic quantities, such as the entropy production rate, are generally severely affected by coarse-graining procedures. Here, by employing an exact integration of a subset of DOFs, we show that two classes of DOFs emerge, entropic and nonentropic. By inspecting the resulting generalized Langevin equation (GLE) for the observed variables, it turns out that active baths are associated with the presence of entropic DOFs exhibiting nonreciprocal interactions with a probe particle. Surprisingly, integrating out these DOFs inevitably results into a system-dependent increase or reduction of the entropy production rate, at variance with other coarse-graining schemes. In this case, the resulting GLE is not thermodynamically consistent. On the contrary, the entropy production rate stays invariant after integrating out nonentropic DOFs and the resulting GLE preserves the thermodynamics of the full system. Additionally, the number of nonentropic DOFs determines the dimensionality of isoentropic hypersurfaces in the parameter space. Our results shed light on the nature of active baths, revealing that the presence of a typical correlation timescale is not a sufficient condition to have nonequilibrium effects on a probe particle, and draws a path towards the understanding of thermodynamically consistent procedures to derive effective dynamics of observed DOFs

    Emergence of synchronised and amplified oscillations in neuromorphic networks with long-range interactions

    No full text
    Neuromorphic networks can be described in terms of coarse-grained variables, where emergent sustained behaviours spontaneously arise if stochasticity is properly taken into account. For example it has been recently found that a directed linear chain of connected patch of neurons amplifies an input signal, also tuning its characteristic frequency. Here we study a generalization of such a simple model, introducing heterogeneity and variability in the parameter space and long-range interactions, breaking, in turn, the preferential direction of information transmission of a directed chain. On one hand, enlarging the region of parameters leads to a more complex state space that we analytically characterise; moreover, we explicitly link the strength distribution of the non-local interactions with the frequency distribution of the network oscillations. On the other hand, we found that adding long-range interactions can cause the onset of novel phenomena, as coherent and synchronous oscillations among all the interacting units, which can also coexist with the amplification of the signal
    corecore