255 research outputs found

    Radon data processing and outputs for the needs of the State Office for Nuclear Safety (according to the Czech Radon Programme)

    Get PDF
    Much of the population living in the Czech Republic is exposed to radiation from natural sources, especially to the radon effect. The aim of geological research defined by the State Office for Nuclear Safety (SONS) was to detect areas with estimated high radon concentration in soil gas. A uniform method of measurements and uniform methodology of radon risk category assessment of geological units and a centralized radon database was established. Radon risk classification was based on statistical evaluation of soil gas radon concentration and permeability in investigated geological units. Prognostic radon risk maps in various scales were the main outputs of this research. With the help of GIS tools spatial analyses were found a correlation between soil gas radon values in selected geological units and indoor measurements in dwellings. After verification of the efficiency of track etch detectors placed in dwellings with the help of prognostic maps 75% reliability of these maps was proven. This reliability of analyses induced the SONS to widely use radon risk maps to determine areas with predicted high radon risk category

    PLIO: a generic tool for real-time operational predictive optimal control of water networks

    Get PDF
    This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation). © IWA Publishing 2011.Research in this group is partially supported by by the Generalitat de Catalunya Research Committee, under grant ref. 2009/SGR/1491, by the Spanish Ministry of Science and Technology under grant WATMAN (CICYT DPI2009-13744) and the EU project WIDE (FP7-IST-224168).Peer Reviewe

    PLIO: a generic tool for real-time operational predictive optimal control of water networks

    Get PDF
    This paper presents a generic tool, named PLIO, that allows to implement the real-time operational control of water networks. Control strategies are generated using predictive optimal control techniques. This tool allows the flow management in a large water supply and distribution system including reservoirs, open-flow channels for water transport, water treatment plants, pressurized water pipe networks, tanks, flow/pressure control elements and a telemetry/telecontrol system. Predictive optimal control is used to generate flow control strategies from the sources to the consumer areas to meet future demands with appropriate pressure levels, optimizing operational goals such as network safety volumes and flow control stability. PLIO allows to build the network model graphically and then to automatically generate the model equations used by the predictive optimal controller. Additionally, PLIO can work off-line (in simulation) and on-line (in real-time mode). The case study of Santiago-Chile is presented to exemplify the control results obtained using PLIO off-line (in simulation)Peer ReviewedPostprint (author’s final draft

    Stiff monatomic gold wires with a spinning zigzag geometry

    Get PDF
    Using first principles density functional calculations, gold monatomic wires are found to exhibit a zigzag shape which remains under tension, becoming linear just before breaking. At room temperature they are found to spin, what explains the extremely long apparent interatomic distances shown by electron microscopy.The zigzag structure is stable if the tension is relieved, the wire holding its chainlike shape even as a free-standing cluster. This unexpected metallic-wire stiffness stems from the transverse quantization in the wire, as shown in a simple free electron model.Comment: 4 pages, latex, 5 figures, submitted to PR

    CP Violation in Neutrinoless Double Beta Decay and Neutrino Oscillation

    Get PDF
    Taking account of possible CP violation, we discuss about the constraints on the lepton mixing angles from the neutrinoless double beta decay and from the neutrino oscillation for the three flavour Majorana neutrinos. From the CHORUS oscillation experiment, combined with the data of neutrinoless double beta decay, we show that the large angle solution of (\theta_{23}) is improbable if the neutrino mass (m_3) of the third generation is a candidate of hot dark matters.Comment: 14pp, REVTeX, 6 Figure

    Light Scalar Top and Heavy Top Signature at CDF

    Full text link
    We propose a mechanism which could explain a slight excess of top signal rate recently reported by CDF in the framework of the supersymmetric standard model. If the scalar partner of the top (stop) is sufficiently light, the gluino with an appropriate mass could decay into the stop plus the top with almost 100\% branching ratio and experimental signatures of the gluino pair production could be indistinguishable from those of the top production in the present integrated luminosity Tevatron running. In this case the standard top signal, WW ++ multi-jets events, would be effectively enhanced by the additional gluino contribution. It is shown, moreover, that such a mechanism can actually work in the radiative SU(2)×\timesU(1) breaking model without the GUT relations between the gaugino mass parameters.Comment: 8 pages (LaTeX), 3 figures not included (available on request) ; ITP-SU-94/03, RUP-94-0

    Validation of Atmospheric Profile Retrievals from the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 2: Ozone

    Get PDF
    This paper continues an overview of the validation of operational profile retrievals from the Suomi National Polar-Orbiting Partnership (SNPP), with focus here given to the infrared (IR) ozone profile environmental data record (EDR) product. The SNPP IR ozone profile EDR is retrieved using the cross-track IR sounder (CrIS), a Fourier transform spectrometer that measures high-resolution IR earth radiance spectra containing atmospheric state information, namely, vertical profiles of temperature, moisture, and trace gas constituents. The SNPP CrIS serves as the U.S. low earth orbit (LEO) satellite IR sounding system and will be featured on future Joint Polar Satellite System (JPSS) LEO satellites. The operational sounding algorithm is the National Oceanic and Atmospheric Administration-Unique Combined Atmospheric Processing System (NUCAPS), a legacy sounder science team algorithm that retrieves atmospheric profile EDR products, including ozone and carbon trace gases, with optimal vertical resolution under nonprecipitating (clear to partly cloudy) conditions. The NUCAPS ozone profile product is assessed in this paper using extensive global in  situin\;situ truth data sets, namely, ozonesonde observations launched from ground-based networks and from ocean-based intensive field campaigns, along with numerical weather prediction model output. Based upon rigorous statistical analyses using these data sets, the NUCAPS ozone profile EDRs are determined to meet the JPSS Level 1 global performance requirements
    corecore