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Abstract— This paper continues an overview of the validation
of operational profile retrievals from the Suomi National Polar-
Orbiting Partnership (SNPP), with focus here given to the
infrared (IR) ozone profile environmental data record (EDR)
product. The SNPP IR ozone profile EDR is retrieved using
the cross-track IR sounder (CrIS), a Fourier transform spec-
trometer that measures high-resolution IR earth radiance spec-
tra containing atmospheric state information, namely, vertical
profiles of temperature, moisture, and trace gas constituents.
The SNPP CrIS serves as the U.S. low earth orbit (LEO)
satellite IR sounding system and will be featured on future Joint
Polar Satellite System (JPSS) LEO satellites. The operational
sounding algorithm is the National Oceanic and Atmospheric
Administration-Unique Combined Atmospheric Processing Sys-
tem (NUCAPS), a legacy sounder science team algorithm that
retrieves atmospheric profile EDR products, including ozone and
carbon trace gases, with optimal vertical resolution under non-
precipitating (clear to partly cloudy) conditions. The NUCAPS
ozone profile product is assessed in this paper using extensive
global in si tu truth data sets, namely, ozonesonde observations
launched from ground-based networks and from ocean-based
intensive field campaigns, along with numerical weather predic-
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tion model output. Based upon rigorous statistical analyses using
these data sets, the NUCAPS ozone profile EDRs are determined
to meet the JPSS Level 1 global performance requirements.

Index Terms— Algorithms, atmospheric measurements,
geophysical measurements, infrared (IR) measurements,
measurement errors, ozone, radiosondes, remote sensing,
satellite applications.

I. INTRODUCTION

THE operational U.S. Suomi National Polar-Orbiting
Partnership (SNPP) satellite features the hyperspectral

infrared (IR) cross-track IR sounder (CrIS) and advanced
technology microwave sounder (ATMS) sounding system.
The follow-on Joint Polar Satellite System (JPSS) is a U.S.
National Oceanic and Atmospheric Administration (NOAA)
operational satellite mission will feature CrIS/ATMS sounders
onboard four satellites launched in the same orbit over the
next two decades beginning in late 2017. The CrIS instrument
is an advanced Fourier transform spectrometer that measures
well-calibrated sensor data records (SDRs) consisting of high-
resolution IR spectra in 1305 channels over three bands
spanning ν ≈ [650, 2550] cm−1. The CrIS spectra allow for
retrieval of atmospheric vertical profile environmental data
records (EDRs) with the highest possible vertical resolution
(≈ 2–5 km) comparable with predecessor sounding systems,
namely, the MetOp-A and -B IR atmospheric sounding inter-
ferometer [1], [2] and the EOS-Aqua atmospheric IR sounder
(AIRS) [3], [4].

Although sounder SDRs (radiances) have come to be
directly assimilated into global numerical weather prediction
(NWP) models via variational analysis schemes, they con-
tinue to be directly inverted operationally to retrieve orbital
atmospheric profile EDRs in near real time, as originally
envisioned by satellite sounding pioneers [5]–[10]. One advan-
tage of direct inversion is the ready capability of inverting
for numerous state parameters beyond atmospheric vertical
temperature profile (AVTP) and atmospheric vertical moisture
profile (AVMP), namely, trace gases, clouds, aerosols, and
surface emissivity, among others.

The operational EDR retrieval algorithm for CrIS/ATMS is
the NOAA-Unique Combined Atmospheric Processing System
(NUCAPS) [11], [12]. The NUCAPS algorithm is based
upon the heritage methodology developed for the EOS-Aqua
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Fig. 1. NUCAPS retrieved 30-hPa layer ozone for ascending and descending orbits on (Top) June 22, 2016 and (Bottom) September 22, 2016 illustrating
the seasonal depletion of ozone from SH winter to SH spring.

AIRS and is a modular implementation of the multistep
AIRS Science Team retrieval algorithm version 5 [13], [14].
For more details on the NUCAPS algorithm, the reader
may refer to [12], [13], or the algorithm theoretical basis
document available online. The multistep NUCAPS physical
retrieval module retrieves individual parameters in a step-by-
step fashion, using only channels rigorously determined to be
sensitive to that parameter [15], beginning with temperature
and water vapor profiles, followed by ozone (O3) and trace
gases, with the result output on the radiative transfer algorithm
(RTA) 100 layers (AVTP is output on layer boundaries).
The NUCAPS IR ozone profile EDR is currently used by
the NOAA total ozone analysis using SBUV/2 and TOVS
(TOAST), as well as in basic science applications.

Because of the multistep retrieval method, the quality of
the ozone profile retrieval (and the other trace gases) will
depend to some extent on the quality of the AVTP and
AVMP retrievals. Thus, the performances of the temperature
and moisture EDRs were first overviewed in [16], where it
was demonstrated that the operational SNPP NUCAPS AVTP
and AVMP EDRs comply with JPSS Level 1 requirements

(and declared validated as of September 2014). In this paper,
the profile EDR validation is extended to the SNPP NUCAPS
IR ozone profile EDR using ozonesonde collocations from
land-based networks and ocean-based dedicated launches,
along with numerical model comparisons.

II. NUCAPS IR OZONE PROFILE EDR OVERVIEW

As mentioned above, users of the NUCAPS IR ozone
profile EDR include the TOAST, in addition to science users
interested in atmospheric chemistry and air quality [17], [18].
Satellite sounder EDR data sets are generally invaluable
for numerous global environmental research studies [19].
To illustrate, Fig. 1 shows NUCAPS ozone retrievals for
the 30-hPa RTA layer for June 22 and September 22, 2016,
these being roughly the southern hemisphere (SH) winter
solstice and spring equinox, respectively. As will be seen in
Section III, the CrIS sensor has very good sensitivity to this
layer, and as a result, the seasonal depletion of ozone from
SH winter to spring, commonly referred to as the Antarctic
“ozone hole” [20], is clearly observed by the NUCAPS ozone
soundings.
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Fig. 2. Hamming apodized CrIS longwave IR brightness temperature
spectrum (unapodized nominal spectral resolution 0.625 cm−1) for a marine
nighttime case (10:22 UTC 9 June 2015, 6.5°N, 130.0°W) showing ozone
channels (red circles) used in the NUCAPS multistep physical retrieval.

As also mentioned above, the NUCAPS physical
retrieval algorithm utilizes information contained within
the CrIS-measured IR earth radiance spectra to retrieve
ozone. The NUCAPS ozone retrieval step applies an optimal
estimation (OE) method to retrieve ozone using sensitive
channels [15] [see Fig. 2] and an a priori background state
consisting of a tropopause-based climatology [21].

Retrieval sensitivity to state parameters (e.g., ozone con-
centration) can be inferred from the averaging kernels (AKs)
defined by [22]–[24]

A ≡ ∂ x̂
∂x

(1)

where the AK matrix A is dimensioned m × m (m being the
number of RTA layers), and x̂ and x denote the retrieved and
true states, respectively. The NUCAPS algorithm computes
“effective” AKs, Ae, for each retrieval that account for the
trapezoidal basis functions used in the physical retrieval,
the details of which can be found in [25]. Fig. 3 shows
zonal-mean NUCAPS profiles taken from a global Focus Day,
February 17, 2015, for the tropics, northern hemisphere (NH)
and SH midlatitude, and polar zones. The left plot shows
the RTA layer-averaged mean effective AKs for the ozone
channels shown in Fig. 2, where it can be seen that the layer
and magnitude of peak sensitivity increase from the poles
to the tropics. Polar sensitivity peaks at around 100 hPa,
whereas midlatitude and tropical sensitivity peak higher in the
upper troposphere to lower stratosphere (UT/LS), ≈50 hPa,
with a sharper peak exhibited in the tropics along with a
secondary peak below the tropopause (middle plot) at around
300 hPa, which when combined with the primary peak shows
UT/LS sensitivity of the NUCAPS ozone product over the
tropics [21]. The greater sensitivity seen in the NH polar cap
(60–90°N) versus the SH is related to the relatively higher
ambient LS ozone concentration found in the NH over the
SH (right plot) during late boreal winter. The ability of the
CrIS to provide information about the ozone profile is also
demonstrated by considering the NUCAPS algorithm degrees
of freedom (DoF) for the ozone retrieval, which are shown
for the February 17, 2015 Focus Day in Fig. 4. Generally
speaking, DoF greater than unity is an indicator that more
than one independent piece of information is contained within
the measurements, thus enabling the retrieval to contribute

Fig. 3. Zonal-mean NUCAPS profiles calculated from a global Focus
Day, February 17, 2015 (n = 2686 granules). (a) RTA layer-averaged
effective AKs Ae for nominal spectral-resolution CrIS ozone channels shown
in Fig. 2. (b) Atmospheric vertical temperature profile retrievals. (c) IR ozone
profile retrievals (log–log plot). The solid lines are tropics (30°S to 30°N),
dotted lines are midlatitudes (30°–60°S and °N), and dashed lines are polar
(60°–90°S and °N).

vertical profile information to the a priori. In Fig. 4, it can
be seen that NUCAPS ozone DoF are generally � 1 globally
speaking, with larger values � 2 found in midlatitude to polar
zones, and smaller values ≈1 in regions of the tropics (possibly
associated with deep convective clouds within the intertropical
convergence zone) as well as over central Antarctica.

III. IR OZONE PROFILE EDR PERFORMANCE

ASSESSMENT

The JPSS Level 1 requirements for the CrIS IR ozone
profile EDR are given in Table I, which are defined for global
nonprecipitating cases on broad atmospheric layers made up
of coarse layers. In the case of ozone, there is only one
tropospheric layer (a consequence of the CrIS ozone sensitivity
as evidenced in the AKs) and six spanning from the upper
troposphere to the stratosphere that are to be computed as
the average of coarse statistical layers. As described in [26],
to avoid undesirable skewing of the sample distribution,
we weight each deviation by the ozone layer mass abundance
squared (i.e., W2 weighting) in the computation of coarse-layer
root-mean-square error (RMSE), bias (mean), and standard
deviation (σ ).

A. CrIS Nominal Spectral Resolution

The operational NUCAPS algorithm (version 1.5) has
run on nominal spectral-resolution (NSR) CrIS SDRs
at �ν ≈ 0.625, 1.25, and 2.5 cm−1 for the longwave,
midwave, and shortwave IR bands, respectively [27], [28].
This section presents the validation of the operational ozone
profile EDR based upon an offline v1.5 emulation.
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Fig. 4. NUCAPS ozone DoF for the global Focus Day, February 17, 2015.
(a) Ascending orbit. (b) Descending orbit.

1) Data: Validation of the operational ozone profile EDR
is primarily based upon collocations of truth data sets con-
sisting of in situ ozone soundings obtained from electro-
chemical concentration cell (ECC) ozonesondes along with
global output from the European Centre for Medium-Range
Weather Forecasts (ECMWF) NWP model. Ozonesondes used
in the analyses were acquired from land-based World Ozone
and Ultraviolet Radiation Data Center (WOUDC) and South-
ern Hemisphere Additional Ozonesonde (SHADOZ) [29]
network sites, along with unique SNPP-dedicated ECC
ozonesondes launched during ship-based intensive cal/val cam-
paigns [16], namely, NOAA Aerosols and Ocean Science
Expeditions (AEROSE) [17], [30] and the 2015 CalWater
ARM Cloud Aerosol Precipitation Experiment (ACAPEX)
[31]–[33]. We have accumulated ozonesonde truth data
sets collocated with SNPP CrIS spanning the period of
early 2012–2015; the locations of these sites are shown
in Fig. 5.

ECC ozonesondes typically measure ozone partial pressure
in mPa with high vertical resolution (e.g., 1 s). These must
be converted to fine layer abundances (molecules/cm2) and
then reduced to 100 RTA layer abundances to yield correla-
tive data for the NUCAPS ozone retrieval [26]. Ozonesonde
partial pressures are first converted to number densities Nx

Fig. 5. Ozonesonde truth sites used for SNPP NUCAPS IR ozone profile
EDR cal/val over the sampling period 2012–2015. Magenta circles denote
SHADOZ sites, red triangles denote WOUDC sites, and blue +, red ×,
gold �, and purple * denote SNPP-dedicated ozonesondes launched from
ship-based intensive campaigns (AEROSE and CalWater/ACAPEX). Map
projection is equal area.

TABLE I

JPSS LEVEL 1 REQUIREMENTS∗ FOR IR OZONE PROFILE EDR

(molecules/cm3) using the formula (in centimeter-gram-second
units)

Nx (px,�, T�) = 10−2
(

px,�

kT�

)
(2)

where px,� is the partial pressure (in mPa) for constituent
x ≡ O3 at ozonesonde level �, T� is the radiosonde temperature
at level �, k is the Boltzmann constant (ergs), and the factor
10−2 converts partial pressure from mPa to dPa. Equation (2)
is then integrated from the balloon burst level down and
interpolated to RTA layer boundaries (i.e., “levels”) to enable
calculation of RTA layer abundances [26].

Although the NUCAPS effective AKs (discussed in
Section II) can be applied to “smooth” the correlative truth data
and remove null-space source error implicit to the retrieval
algorithm (thus yielding improved statistics), the primary
focus of this paper is to evaluate the product’s performance
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Fig. 6. Geographic histogram of SNPP NUCAPS FOR-ozonesonde col-
location data used in the global land/sea statistical error analysis. Circle
sizes depict the relative SNPP-ozonesonde collocation sample sizes for each
ozonesonde launch location. Map projection is equal area.

against the metrics defined by the JPSS Level 1 requirements
summarized in Table I. The JPSS requirements are applicable
to the total system error, which includes the null-space error,
thus precluding the use of AKs in demonstrating the product
meets requirements. Thus, a more detailed breakdown of
algorithm error sources, including null-space error using AKs,
falls outside the scope of the current effort and will be the
subject of future work (e.g., the JPSS-1 NUCAPS validation
effort).

2) Error Analysis: As in the collocation methodology
described in [16], we have imposed space–time collocation
criteria to the NUCAPS-ozonesonde collocation data set,
striking a balance between collocation mismatch uncertainty
and sample size. In this case, FORs are included within
δx ≤ 125-km radius and −240 < δt < +120 min of
launches (note that the selected ozonesonde sites, including the
dedicated ozonesonde launches, favored ozonesondes being
launched prior to overpasses). Fig. 6 shows the corresponding
geographic histogram of the distribution of the ozonesonde
collocation sample on an equal-area map projection, where
it can be seen that the combination of the ozonesonde sites
described above provide adequate representation of global
climate zones (tropics, midlatitudes, and polar) along with land
and ocean surfaces.

The resulting global profile error statistics are given
in Fig. 7, along with those separated by polar, midlati-
tude, and tropical zones given in Figs. 8–10, respectively.
In Figs. 7–10, blue lines show the results of the NUCAPS
retrievals (IR accepted cases, clear to partly cloudy) and
magenta lines show the results of the a priori (climato-
logical background) used in the physical retrieval. The left
and right plots show the coarse-layer RMSE and bias ±1σ
statistics, respectively. The JPSS Level 1 global specification
requirements (Table I) for RMSE and bias are shown with
dashed gray lines in the plots. The corresponding broad-layer
averages for these statistics are depicted with asterisks in the
plots, with the global results summarized in Table II. It should
be noted that although we have included the JPSS global
requirement lines and broad-layer averages in the zonal plots
(Figs. 8–10) for reference, JPSS requirements are specified

Fig. 7. Coarse-layer statistical assessment of the NUCAPS IR ozone
profile EDR (offline v1.5 operational emulation, blue lines) versus collocated
ozonesondes for retrievals accepted by the quality flag within space–time
collocation criteria of δx ≤ 125-km radius and −240 ≤ δt ≤ +120 min
of launches over a sampling period of April 4, 2012 to December 12, 2015.
(Left) RMSE results. (Right) Bias ±1σ results. NUCAPS IR physical retrieval
(under clear to partly cloudy conditions) and a priori (climatological back-
ground) performances are given as blue and magenta lines, respectively, with
collocation sample size for each coarse-layer given in the right margins. The
gray dashed lines designate the JPSS Level 1 global performance requirements
for two broad atmospheric layers defined in Table I, with asterisks denoting
the calculated broad-layer averages for the physical retrievals.

Fig. 8. As Fig. 7 except for NUCAPS retrievals collocated with ozonesondes
in the NH and SH polar caps.

for global ensembles only; thus, they do not have any direct
bearing on results obtained for any type of subsample binning
(e.g., latitude zones).

A scatterplot of NUCAPS versus ozonesonde layer-averaged
O3 molecular abundances for the two broad atmospheric
layers is shown in Fig. 11. The majority of the data fall
along the one-to-one line with the exception of a region
between the two layers, where a small number of NUCAPS
retrievals in the 260–4 hPa layer (red + symbols) are seen to
significantly overestimate the ozone concentration relative to
the ozonesondes. The region in question roughly corresponds
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Fig. 9. As Fig. 7 except for NUCAPS retrievals collocated with ozonesondes
in the midlatitude zones.

Fig. 10. As Fig. 7 except for NUCAPS retrievals collocated with ozonesondes
in the tropical zone.

TABLE II

VALIDATED GLOBAL IR OZONE PROFILE EDR
MEASUREMENT UNCERTAINTY

to the tropopause region, where two potential sources of
error would include a priori and null-space errors. Null-space
errors result from the limitations in the CrIS instrument’s
vertical resolution and sensitivity (e.g., Fig. 3); this issue will
be explored using the NUCAPS effective AKs in a future
paper. The correlation coefficients, r , along with corresponding
p-values, are included in Table II, where it is seen that the
broad-layer correlations between NUCAPS and ozonesondes
are � +0.7.

Fig. 11. Scatterplot of NUCAPS versus ozonesonde layer-averaged O3 mole-
cular abundances (molecules/cm2 ) for the two broad atmospheric layers
defined in this paper: 1014–260 hPa (blue ×) and 260–4 hPa (red +).
Correlation coefficients r and p-values are given in Table II.

In discussing further the results presented in Figs. 7–10, it is
first recalled that the NUCAPS ozone physical retrieval step
uses an OE method that relies on a formal a priori derived
based upon a climatological background state [21]. Figs. 7–10
demonstrate the ability of the retrieval (blue lines) to move
the a priori state (magenta lines) toward the ozonesonde-
observed state as evidenced by the significantly reduced σ
and RMSE for layers where the CrIS channels have sensitivity
[Fig. 3(a)]. Because the a priori (magenta) is based upon
climatology, it is not surprising that it exhibits very little global
bias, making further improvement from the retrieval difficult
to achieve (Fig. 7, right plot). Thus, the NUCAPS OE ozone
retrieval uses the observed IR spectral information to measure
deviations from the a priori (i.e., mean) state, resulting in the
reduction of random errors (σ and RMSE), but not necessarily
the systematic error.

We find that the global ozone profile EDR meets the JPSS
requirements, with the only exception being the precision (σ )
for the tropospheric broad layer (surface to 260 hPa), which
falls somewhat outside of the 20% requirement for this layer.
However, referring back to the AKs shown in Fig. 3, it is
noted that the CrIS instrument possesses little sensitivity in
the troposphere, thereby requiring the algorithm to relax to
the a priori. The overall results for SNPP NUCAPS presented
here are comparable with those reported previously for the
Aqua AIRS version 5 ozone product [34]. Therefore, based
on our findings (Fig. 7 and Table II), it is concluded that the
NUCAPS ozone profile EDR generally meets the JPSS Level 1
requirements.

Similar performance patterns (both RMSE and bias) are
observed in the three climate zones, with overall profile
performances improving with latitude zone from the tropics to
the poles. The diminished performance in the tropics (Fig. 10)
is associated with what may potentially be a suboptimal
a priori (magenta lines) combined with reduced ozone DoF
(Fig. 4) and ozone AK sensitivity at higher altitudes (Fig. 3).
The physical retrieval significantly improves the a priori in



604 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 1, JANUARY 2018

Fig. 12. Weekly statistical time series (bias ±1σ ) for NUCAPS v1.5 IR ozone
profile EDR retrievals versus the collocated ozonesondes (Fig. 6) acquired
over the sampling period of 2012–2015 for three UT/LS coarse layers.
(Top) ≈23 hPa. (Middle) ≈47 hPa. (Bottom) ≈93 hPa.

UT/LS in both the polar and midlatitude zones (Figs. 8 and 9,
respectively), whereas the improvement is reduced, but never-
theless still evident, for the tropical cases (Fig. 10). Global
seasonal stability in the retrievals for three UT/LS coarse
layers (23, 47, and 93 hPa) over the ozonesonde acquisition
period is demonstrated in Fig. 12. Weekly biases generally
fall within −20% to 0% for the 23-hPa layer, ±20% for the
47-hPa layer, and −10% to +40% at 93 hPa, with very little
seasonal variability or long-term trends. Note that two short
acquisition periods at the beginning and ending of 2015 cor-
respond to dedicated ozonesondes acquired over ocean dur-
ing the 2015 CalWater/ACAPEX and AEROSE campaigns,
the former obtained under inclement weather conditions in
the Pacific [32], [33] and the latter obtained over the tropical
Atlantic (see Fig. 5).

B. CrIS Full Spectral Resolution

As discussed in [16], the operational SNPP NUCAPS
v1.5 has previously run on CrIS spectra with reduced reso-
lution in the midwave and shortwave bands due to truncated
interferograms in those bands during operational process-
ing; these reduced-resolution spectra have been referred to
as “nominal resolution” as this was the original (nomi-
nal) resolution of the operational SDRs. However, offline
production of SNPP full spectral resolution (FSR) CrIS
SDRs (�ν ≈ 0.625 cm−1 in all three bands) began in
December 2014 [35], with operational Interface Data Process-
ing Segment (IDPS) production starting in March 2017. Given
that CrIS FSR SDRs will be produced operationally going
forward (i.e., for the remainder of the SNPP lifetime as well
as the follow-on JPSS satellite series, with the JPSS-1 launch
tentatively scheduled for November 2017), a preliminary
experimental offline NUCAPS version was developed to run
on CrIS FSR data for demonstration studies [36]. A completed
version (v2.0.5), representing the operational delivery of the

Fig. 13. As Fig. 7 except statistical assessment of offline NUCAPS v2.0.5
(CrIS FSR, red lines) and v1.5 (CrIS nominal resolution, blue lines) IR phys-
ical retrievals versus collocated ECMWF model output (analysis or forecast
nearest in time, red lines) for retrievals accepted by the quality flag for a global
Focus Day, February 17, 2015. Global yields for v2.0.5 and v1.5 accepted
cases are 83.4% and 63.5%, respectively, indicating a marked improvement
in the v2.0.5 quality acceptance yield.

Fig. 14. As Fig. 13 except for NUCAPS retrievals collocated with ECMWF
within the NH and SH polar caps.

NUCAPS system in FSR mode, was demonstrated and deliv-
ered for operational implementation in July to August 2017.

Because CrIS FSR SDRs were not operationally
available during the ozonesonde acquisition period,
a preliminary assessment of the NUCAPS FSR algorithm has
been performed versus numerical forecast model output (viz.,
ECMWF) for a global Focus Day (February 17, 2015) [26]
where the CrIS FSR SDRs were made available offline. As in
Section III-A2, Fig. 13 shows the global results, Figs. 14–16
show the breakdowns by latitude zones. In Figs. 13–16,
the red lines show the FSR v2.0.5 NUCAPS results with
blue lines showing the v1.5 NSR results for comparison.
The patterns are similar (but not identical) to those obtained
when using ozonesondes as the baseline (see Figs. 7–10),
with improved performance occurring with latitude zone
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Fig. 15. As Fig. 13 except for NUCAPS retrievals collocated with ECMWF
within the midlatitude zones.

Fig. 16. As Fig. 13 except for NUCAPS retrievals collocated with ECMWF
within the tropical zone.

from tropical (Fig. 16) to midlatitude (Fig. 15) to polar
zones (Fig. 14). Of particular note, the NUCAPS v2.0.5 FSR
algorithm demonstrates a significant improvement over
the v1.5 NSR algorithm in the IR + MW retrieval quality
acceptance yield, from 63.5% to 83.4%, while demonstrating
comparable performance. Rejected cases typically occur under
environmental conditions that present challenges to passive
IR retrievals but are otherwise of meteorological interest
(e.g., cloudiness associated with convection). In spite of this,
it is seen that the NUCAPS FSR (v2.0.5) algorithm otherwise
performs comparably with the fully validated NUCAPS NSR
(v1.5), with the broad-layer averages (denoted with asterisks)
generally meeting the JPSS Level 1 requirements relative to
ECMWF.

IV. CONCLUSION

This paper has presented the formal validation of the SNPP
NUCAPS IR ozone profile EDR in continuation of the valida-
tion of atmospheric vertical temperature and moisture profile

EDRs described in [16]. Based upon a globally representative
sample of collocated ozonesondes and ECMWF model output,
it has been shown that the NUCAPS v1.5 IR ozone profile
EDR (CrIS-FSR) meets JPSS Level 1 broad-layer global per-
formance requirements (Tables I and II) and has thus attained
validated maturity. It is noted that the ozonesonde sites used
in this analysis (Fig. 5) include those from all global climate
zones (tropical, midlatitude, and polar), as well as unique
marine-based data sets obtained from ship over both the Pacific
and Atlantic Oceans (i.e., AEROSE and CalWater/ACAPEX
campaigns). The NUCAPS OE physical retrieval was shown
to improve upon the climatological a priori in UT/LS lay-
ers (Figs. 7 and 13) where CrIS has sensitivity (Fig. 3).
Results vary somewhat depending on latitude zone (tropical,
midlatitude, and polar), with a general improvement seen at
higher latitudes as would be expected given the variation in
ozone DoF (Fig. 4) and in vertical sensitivity (Fig. 3). The
algorithm has been successfully implemented for SNPP CrIS-
FSR SDRs (v2.0.5), these being produced for future JPSS
satellites and operationally from SNPP since March 2017,
with increased yield and comparable performance versus the
validated NUCAPS v1.5 algorithm (Fig. 13). Full validation
of the JPSS-1 NUCAPS-FSR algorithm (including future
upgrades) versus global ensembles of collocated ozonesondes
(including dedicated ozonesondes) will be the subject of future
work.
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